Vehicle Dynamics, Stability, and Control, Second Edition

Author: Dean Karnopp

Publisher: CRC Press

ISBN:

Category: Technology & Engineering

Page: 326

View: 955

Anyone who has experience with a car, bicycle, motorcycle, or train knows that the dynamic behavior of different types of vehicles and even different vehicles of the same class varies significantly. For example, stability (or instability) is one of the most intriguing and mysterious aspects of vehicle dynamics. Why do some motorcycles sometimes exhibit a wobble of the front wheel when ridden "no hands" or a dangerous weaving motion at high speed? Why does a trailer suddenly begin to oscillate over several traffic lanes just because its load distribution is different from the usual? Other questions also arise: How do humans control an inherently unstable vehicle such as a bicycle and how could a vehicle be designed or modified with an automatic control system to improve its dynamic properties? Using mainly linear vehicle dynamic models as well as discussion of nonlinear limiting effects, Vehicle Dynamics, Stability, and Control, Second Edition answers these questions and more. It illustrates the application of techniques from kinematics, rigid body dynamics, system dynamics, automatic control, stability theory, and aerodynamics to the study of the dynamic behavior of a number of vehicle types. In addition, it presents specialized topics dealing specifically with vehicle dynamics such as the force generation by pneumatic tires, railway wheels, and wings. The idea that vehicles can exhibit dangerous behavior for no obvious reason is in itself fascinating. Particularly obvious in racing situations or in speed record attempts, dynamic problems are also ubiquitous in everyday life and are often the cause of serious accidents. Using relatively simple mathematical models, the book offers a satisfying introduction to the dynamics, stability, and control of vehicles.

Vehicle Dynamics and Control

Author: Rajesh Rajamani

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 498

View: 906

Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicles. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability control has been enhanced. The use of feedback control systems on automobiles is growing rapidly. This book is intended to serve as a useful resource to researchers who work on the development of such control systems, both in the automotive industry and at universities. The book can also serve as a textbook for a graduate level course on Vehicle Dynamics and Control.

Vehicle Stability

Author: Dean Karnopp

Publisher: CRC Press

ISBN:

Category: Technology & Engineering

Page: 344

View: 357

This reference offers a systematic approach to the dynamics and stability of vehicles such as cars, bicycles, trailers, motorcycles, and trains and shows how mathematical models of varying degrees of complexity can be used to suggest design guidelines for assurance of vehicle stability. Based on more than 30 years of teaching experience from a renowned authority in mechanical systems modeling, this volume illustrates the derivations of equations of motion using Newton's laws, Lagrange's equations, and bond graphs through a series of examples dispersed throughout the text and describes the similarities and differences in the stability properties of various vehicle types.

Heat Exchanger Design Handbook, Second Edition

Author: Kuppan Thulukkanam

Publisher: CRC Press

ISBN:

Category: Technology & Engineering

Page: 1260

View: 702

Completely revised and updated to reflect current advances in heat exchanger technology, Heat Exchanger Design Handbook, Second Edition includes enhanced figures and thermal effectiveness charts, tables, new chapter, and additional topics––all while keeping the qualities that made the first edition a centerpiece of information for practicing engineers, research, engineers, academicians, designers, and manufacturers involved in heat exchange between two or more fluids. See What’s New in the Second Edition: Updated information on pressure vessel codes, manufacturer’s association standards A new chapter on heat exchanger installation, operation, and maintenance practices Classification chapter now includes coverage of scrapped surface-, graphite-, coil wound-, microscale-, and printed circuit heat exchangers Thorough revision of fabrication of shell and tube heat exchangers, heat transfer augmentation methods, fouling control concepts and inclusion of recent advances in PHEs New topics like EMbaffle®, Helixchanger®, and Twistedtube® heat exchanger, feedwater heater, steam surface condenser, rotary regenerators for HVAC applications, CAB brazing and cupro-braze radiators Without proper heat exchanger design, efficiency of cooling/heating system of plants and machineries, industrial processes and energy system can be compromised, and energy wasted. This thoroughly revised handbook offers comprehensive coverage of single-phase heat exchangers—selection, thermal design, mechanical design, corrosion and fouling, FIV, material selection and their fabrication issues, fabrication of heat exchangers, operation, and maintenance of heat exchangers —all in one volume.

Steam Generators and Waste Heat Boilers

For Process and Plant Engineers

Author: V. Ganapathy

Publisher: CRC Press

ISBN:

Category: Science

Page: 539

View: 385

Incorporates Worked-Out Real-World Problems Steam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel ideas for improving boiler efficiency and lowering gas pressure drop. It helps plant engineers understand and evaluate the performance of steam generators and waste heat boilers at any load. Learn How to Independently Evaluate the Thermal Performance of Boilers and Their Components This book begins with basic combustion and boiler efficiency calculations. It then moves on to estimation of furnace exit gas temperature (FEGT), furnace duty, view factors, heat flux, and boiler circulation calculations. It also describes trends in large steam generator designs such as multiple-module; elevated drum design types of boilers such as D, O, and A; and forced circulation steam generators. It illustrates various options to improve boiler efficiency and lower operating costs. The author addresses the importance of flue gas analysis, fire tube versus water tube boilers used in chemical plants, and refineries. In addition, he describes cogeneration systems; heat recovery in sulfur plants, hydrogen plants, and cement plants; and the effect of fouling factor on performance. The book also explains HRSG simulation process and illustrates calculations for complete performance evaluation of boilers and their components. Helps plant engineers make independent evaluations of thermal performance of boilers before purchasing them Provides numerous examples on boiler thermal performance calculations that help plant engineers develop programming codes with ease Follows the metric and SI system, and British units are shown in parentheses wherever possible Includes calculation procedures for the basic sizing and performance evaluation of a complete steam generator or waste heat boiler system and their components with appendices outlining simplified procedures for estimation of heat transfer coefficients Steam Generators and Waste Heat Boilers: For Process and Plant Engineers serves as a source book for plant engineers, consultants, and boiler designers.

Dynamic Stability and Control of Tripped and Untripped Vehicle Rollover

Author: Zhilin Jin

Publisher: Morgan & Claypool Publishers

ISBN:

Category: Technology & Engineering

Page: 120

View: 118

Vehicle rollover accidents have been a serious safety problem for the last three decades. Although rollovers are a small percentage of all traffic accidents, they do account for a large proportion of severe and fatal injuries. Specifically, some large passenger vehicles, such as large vans, pickup trucks, and sport utility vehicles, are more prone to rollover accidents with a high center of gravity (CG) and narrow track width. Vehicle rollover accidents may be grouped into two categories: tripped and untripped rollovers. A tripped rollover commonly occurs when a vehicle skids and digs its tires into soft soil or hits a tripping mechanism such as a curb with a sufficiently large lateral velocity. On the other hand, the untripped rollover is induced by extreme maneuvers during critical driving situations, such as excessive speed during cornering, obstacle avoidance, and severe lane change maneuver. In these situations, the forces at the tire-road contact point are large enough to cause the vehicle to roll over. Furthermore, vehicle rollover may occur due to external disturbances such as side-wind and steering excitation. Therefore, it is necessary to investigate the dynamic stability and control of tripped and untripped vehicle rollover so as to avoid vehicle rollover accidents. In this book, different dynamic models are used to describe the vehicle rollover under both untripped and special tripped situations. From the vehicle dynamics theory, rollover indices are deduced, and the dynamic stabilities of vehicle rollover are analyzed. In addition, some active control strategies are discussed to improve the anti-rollover performance of the vehicle.

Off-road Vehicle Dynamics

Analysis, Modelling and Optimization

Author: Hamid Taghavifar

Publisher: Springer

ISBN:

Category: Technology & Engineering

Page: 183

View: 519

This book deals with the analysis of off-road vehicle dynamics from kinetics and kinematics perspectives and the performance of vehicle traversing over rough and irregular terrain. The authors consider the wheel performance, soil-tire interactions and their interface, tractive performance of the vehicle, ride comfort, stability over maneuvering, transient and steady state conditions of the vehicle traversing, modeling the aforementioned aspects and optimization from energetic and vehicle mobility perspectives. This book brings novel figures for the transient dynamics and original wheel terrain dynamics at on-the-go condition.

Dynamic Modeling and Control of Engineering Systems

Author: Bohdan T. Kulakowski

Publisher: Cambridge University Press

ISBN:

Category: Technology & Engineering

Page:

View: 484

This textbook is ideal for a course in engineering systems dynamics and controls. The work is a comprehensive treatment of the analysis of lumped parameter physical systems. Starting with a discussion of mathematical models in general, and ordinary differential equations, the book covers input/output and state space models, computer simulation and modeling methods and techniques in mechanical, electrical, thermal and fluid domains. Frequency domain methods, transfer functions and frequency response are covered in detail. The book concludes with a treatment of stability, feedback control (PID, lead-lag, root locus) and an introduction to discrete time systems. This new edition features many new and expanded sections on such topics as: solving stiff systems, operational amplifiers, electrohydraulic servovalves, using Matlab with transfer functions, using Matlab with frequency response, Matlab tutorial and an expanded Simulink tutorial. The work has 40% more end-of-chapter exercises and 30% more examples.

Theory of Ground Vehicles

Author: J. Y. Wong

Publisher: John Wiley & Sons

ISBN:

Category: Technology & Engineering

Page: 528

View: 803

An updated edition of the classic reference on the dynamics of road and off–road vehicles As we enter a new millennium, the vehicle industry faces greater challenges than ever before as it strives to meet the increasing demand for safer, environmentally friendlier, more energy efficient, and lower emissions products. Theory of Ground Vehicles, Third Edition gives aspiring and practicing engineers a fundamental understanding of the critical factors affecting the performance, handling, and ride essential to the development and design of ground vehicles that meet these requirements. As in previous editions, this book focuses on applying engineering principles to the analysis of vehicle behavior. A large number of practical examples and problems are included throughout to help readers bridge the gap between theory and practice. Covering a wide range of topics concerning the dynamics of road and off–road vehicles, this Third Edition is filled with up–to–date information, including: ∗ The Magic Formula for characterizing pneumatic tire behavior from test data for vehicle handling simulations ∗ Computer–aided methods for performance and design evaluation of off–road vehicles, based on the author′s own research ∗ Updated data on road vehicle transmissions and operating fuel economy ∗ Fundamentals of road vehicle stability control ∗ Optimization of the performance of four–wheel–drive off–road vehicles and experimental substantiation, based on the author′s own investigations ∗ A new theory on skid–steering of tracked vehicles, developed by the author.

Computation and Asymptotics

Author: Rudrapatna V. Ramnath

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 120

View: 763

This book addresses the task of computation from the standpoint of asymptotic analysis and multiple scales that may be inherent in the system dynamics being studied. This is in contrast to the usual methods of numerical analysis and computation. The technical literature is replete with numerical methods such as Runge-Kutta approach and its variations, finite element methods, and so on. However, not much attention has been given to asymptotic methods for computation, although such approaches have been widely applied with great success in the analysis of dynamic systems. The presence of different scales in a dynamic phenomenon enable us to make judicious use of them in developing computational approaches which are highly efficient. Many such applications have been developed in such areas as astrodynamics, fluid mechanics and so on. This book presents a novel approach to make use of the different time constants inherent in the system to develop rapid computational methods. First, the fundamental notions of asymptotic analysis are presented with classical examples. Next, the novel systematic and rigorous approaches of system decomposition and reduced order models are presented. Next, the technique of multiple scales is discussed. Finally application to rapid computation of several aerospace systems is discussed, demonstrating the high efficiency of such methods.