Athens Conference on Applied Probability and Time Series Analysis

Volume II: Time Series Analysis In Memory of E.J. Hannan

Author: P.M. Robinson

Publisher: Springer Science & Business Media


Category: Mathematics

Page: 432

View: 885

The Athens Conference on Applied Probability and Time Series in 1995 brought together researchers from across the world. The published papers appear in two volumes. Volume II presents papers on time series analysis, many of which were contributed to a meeting in March 1995 partly in honour of E.J. Hannan. The initial paper by P.M. Robinson discusses Ted Hannan's researches and their influence on current work in time series analysis. Other papers discuss methods for finite parameter Gaussian models, time series with infinite variance or stable marginal distribution, frequency domain methods, long range dependent processes, nonstationary processes, and nonlinear time series. The methods presented can be applied in a number of fields such as statistics, applied mathematics, engineering, economics and ecology. The papers include many of the topics of current interest in time series analysis and will be of interest to a wide range of researchers.

The Analysis of Time Series

An Introduction with R

Author: Chris Chatfield

Publisher: CRC Press


Category: Mathematics

Page: 398

View: 784

This new edition of this classic title, now in its seventh edition, presents a balanced and comprehensive introduction to the theory, implementation, and practice of time series analysis. The book covers a wide range of topics, including ARIMA models, forecasting methods, spectral analysis, linear systems, state-space models, the Kalman filters, nonlinear models, volatility models, and multivariate models. It also presents many examples and implementations of time series models and methods to reflect advances in the field. Highlights of the seventh edition: A new chapter on univariate volatility models A revised chapter on linear time series models A new section on multivariate volatility models A new section on regime switching models Many new worked examples, with R code integrated into the text The book can be used as a textbook for an undergraduate or a graduate level time series course in statistics. The book does not assume many prerequisites in probability and statistics, so it is also intended for students and data analysts in engineering, economics, and finance.

Methods of Information Geometry

Author: Shun-ichi Amari

Publisher: American Mathematical Soc.


Category: Mathematics

Page: 206

View: 255

Information geometry provides the mathematical sciences with a new framework of analysis. It has emerged from the investigation of the natural differential geometric structure on manifolds of probability distributions, which consists of a Riemannian metric defined by the Fisher information and a one-parameter family of affine connections called the $\alpha$-connections. The duality between the $\alpha$-connection and the $(-\alpha)$-connection together with the metric play an essential role in this geometry. This kind of duality, having emerged from manifolds of probability distributions, is ubiquitous, appearing in a variety of problems which might have no explicit relation to probability theory. Through the duality, it is possible to analyze various fundamental problems in a unified perspective. The first half of this book is devoted to a comprehensive introduction to the mathematical foundation of information geometry, including preliminaries from differential geometry, the geometry of manifolds or probability distributions, and the general theory of dual affine connections. The second half of the text provides an overview of many areas of applications, such as statistics, linear systems, information theory, quantum mechanics, convex analysis, neural networks, and affine differential geometry. The book can serve as a suitable text for a topics course for advanced undergraduates and graduate students.

Theory and Applications of Time Series Analysis

Selected Contributions from ITISE 2019

Author: Olga Valenzuela

Publisher: Springer Nature


Category: Business & Economics

Page: 460

View: 695

This book presents a selection of peer-reviewed contributions on the latest advances in time series analysis, presented at the International Conference on Time Series and Forecasting (ITISE 2019), held in Granada, Spain, on September 25-27, 2019. The first two parts of the book present theoretical contributions on statistical and advanced mathematical methods, and on econometric models, financial forecasting and risk analysis. The remaining four parts include practical contributions on time series analysis in energy; complex/big data time series and forecasting; time series analysis with computational intelligence; and time series analysis and prediction for other real-world problems. Given this mix of topics, readers will acquire a more comprehensive perspective on the field of time series analysis and forecasting. The ITISE conference series provides a forum for scientists, engineers, educators and students to discuss the latest advances and implementations in the foundations, theory, models and applications of time series analysis and forecasting. It focuses on interdisciplinary research encompassing computer science, mathematics, statistics and econometrics.

Time Series Analysis

Author: Henrik Madsen

Publisher: CRC Press


Category: Mathematics

Page: 400

View: 561

With a focus on analyzing and modeling linear dynamic systems using statistical methods, Time Series Analysis formulates various linear models, discusses their theoretical characteristics, and explores the connections among stochastic dynamic models. Emphasizing the time domain description, the author presents theorems to highlight the most important results, proofs to clarify some results, and problems to illustrate the use of the results for modeling real-life phenomena. The book first provides the formulas and methods needed to adapt a second-order approach for characterizing random variables as well as introduces regression methods and models, including the general linear model. It subsequently covers linear dynamic deterministic systems, stochastic processes, time domain methods where the autocorrelation function is key to identification, spectral analysis, transfer-function models, and the multivariate linear process. The text also describes state space models and recursive and adaptivemethods. The final chapter examines a host of practical problems, including the predictions of wind power production and the consumption of medicine, a scheduling system for oil delivery, and the adaptive modeling of interest rates. Concentrating on the linear aspect of this subject, Time Series Analysis provides an accessible yet thorough introduction to the methods for modeling linear stochastic systems. It will help you understand the relationship between linear dynamic systems and linear stochastic processes.

The Analysis of Time Series: Theory and Practice

Author: Christopher Chatfield

Publisher: Springer


Category: Mathematics

Page: 263

View: 111

Time-series analysis is an area of statistics which is of particular interest at the present time. Time series arise in many different areas, ranging from marketing to oceanography, and the analysis of such series raises many problems of both a theoretical and practical nature. I first became interested in the subject as a postgraduate student at Imperial College, when I attended a stimulating course of lectures on time-series given by Dr. (now Professor) G. M. Jenkins. The subject has fascinated me ever since. Several books have been written on theoretical aspects of time-series analysis. The aim of this book is to provide an introduction to the subject which bridges the gap between theory and practice. The book has also been written to make what is rather a difficult subject as understandable as possible. Enough theory is given to introduce the concepts of time-series analysis and to make the book mathematically interesting. In addition, practical problems are considered so as to help the reader tackle the analysis of real data. The book assumes a knowledge of basic probability theory and elementary statistical inference (see Appendix III). The book can be used as a text for an undergraduate or postgraduate course in time-series, or it can be used for self tuition by research workers. Throughout the book, references are usually given to recent readily accessible books and journals rather than to the original attributive references. Wold's (1965) bibliography contains many time series references published before 1959.

Information Geometry and Its Applications

Author: Shun-ichi Amari

Publisher: Springer


Category: Mathematics

Page: 374

View: 455

This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman–Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning, signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.

System Structure and Control 1992

Author: V. Strejc

Publisher: Elsevier


Category: Technology & Engineering

Page: 504

View: 349

Provides a useful reference source on system structure and control. Covers, linear systems, nonlinear systems, robust control, implicit system, chaotic systems, singular and time-varying systems.