Handbook of Structural Equation Modeling

Author: Rick H. Hoyle

Publisher: Guilford Publications

ISBN:

Category: Psychology

Page: 740

View: 760

The first comprehensive structural equation modeling (SEM) handbook, this accessible volume presents both the mechanics of SEM and specific SEM strategies and applications. The editor, contributors, and editorial advisory board are leading methodologists who have organized the book to move from simpler material to more statistically complex modeling approaches. Sections cover the foundations of SEM; statistical underpinnings, from assumptions to model modifications; steps in implementation, from data preparation through writing the SEM report; and basic and advanced applications, including new and emerging topics in SEM. Each chapter provides conceptually oriented descriptions, fully explicated analyses, and engaging examples that reveal modeling possibilities for use with readers' data. Many of the chapters also include access to data and syntax files at the companion website, allowing readers to try their hands at reproducing the authors' results.

Structural Equation Modeling

Present and Future : a Festschrift in Honor of Karl Jöreskog

Author: Robert Cudeck

Publisher: Scientific Software International

ISBN:

Category: Factor analysis

Page: 598

View: 183

Using LISREL for Structural Equation Modeling

A Researcher's Guide

Author: E. Kevin Kelloway

Publisher: SAGE

ISBN:

Category: Social Science

Page: 147

View: 939

This highly readable introduction to structural equation modeling is designed for researchers and graduate students in the social sciences who want to use structural equation modeling techniques to answer substantive research questions. An overview of structural equation modeling includes the theory and logic of structural equation models, assessing the "fit" of structural equation models to the data, and their SEMs implementation in the LISREL environment.

Principles and Practice of Structural Equation Modeling, Fourth Edition

Author: Rex B. Kline

Publisher: Guilford Publications

ISBN:

Category: Social Science

Page: 534

View: 438

New to This Edition *Extensively revised to cover important new topics: Pearl' s graphing theory and SCM, causal inference frameworks, conditional process modeling, path models for longitudinal data, item response theory, and more. *Chapters on best practices in all stages of SEM, measurement invariance in confirmatory factor analysis, and significance testing issues and bootstrapping. *Expanded coverage of psychometrics. *Additional computer tools: online files for all detailed examples, previously provided in EQS, LISREL, and Mplus, are now also given in Amos, Stata, and R (lavaan). *Reorganized to cover the specification, identification, and analysis of observed variable models separately from latent variable models. Pedagogical Features *Exercises with answers, plus end-of-chapter annotated lists of further reading. *Real examplesof troublesome data, demonstrating how to handle typical problems in analyses.

Basics of Structural Equation Modeling

Author: Geoffrey Maruyama

Publisher: SAGE

ISBN:

Category: Social Science

Page: 311

View: 825

With the availability of software programs, such as LISREL, EQS, and AMOS, modelling (SEM) techniques have become a popular tool for formalized presentation of the hypothesized relationships underlying correlational research and test for the plausibility of the hypothesizing for a particular data set. However, the popularity of these techniques has often led to misunderstandings of them and even their misuse, particularly by students exposed to them for the first time. Through the use of careful narrative explanation, Maruyama's text describes the logic underlying SEM approaches, describes how SEM approaches relate to techniques like regression and factor analysis, analyzes the strengths and shortcomings of SEM as compared to alternative methodologies, and explores the various methodologies for analyzing structural equation data. In addition, Maruyama provides carefully constructed exercises both within and at the end of chapters.

Structural Equation Modeling

Applications Using Mplus

Author: Jichuan Wang

Publisher: John Wiley & Sons

ISBN:

Category: Social Science

Page: 480

View: 239

A reference guide for applications of SEM using Mplus Structural Equation Modeling: Applications Using Mplus is intended as both a teaching resource and a reference guide. Written in non-mathematical terms, this book focuses on the conceptual and practical aspects of Structural Equation Modeling (SEM). Basic concepts and examples of various SEM models are demonstrated along with recently developed advanced methods, such as mixture modeling and model-based power analysis and sample size estimate for SEM. The statistical modeling program, Mplus, is also featured and provides researchers with a flexible tool to analyze their data with an easy-to-use interface and graphical displays of data and analysis results. Key features: Presents a useful reference guide for applications of SEM whilst systematically demonstrating various advanced SEM models, such as multi-group and mixture models using Mplus. Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes. Provides step-by-step instructions of model specification and estimation, as well as detail interpretation of Mplus results. Explores different methods for sample size estimate and statistical power analysis for SEM. By following the examples provided in this book, readers will be able to build their own SEM models using Mplus. Teachers, graduate students, and researchers in social sciences and health studies will also benefit from this book.

Structural Equation Modeling With Lisrel, Prelis, and Simplis

Basic Concepts, Applications, and Programming

Author: Barbara M. Byrne

Publisher: Psychology Press

ISBN:

Category: Psychology

Page: 432

View: 287

This book illustrates the ease with which various features of LISREL 8 and PRELIS 2 can be implemented in addressing research questions that lend themselves to SEM. Its purpose is threefold: (a) to present a nonmathmatical introduction to basic concepts associated with SEM, (b) to demonstrate basic applications of SEM using both the DOS and Windows versions of LISREL 8, as well as both the LISREL and SIMPLIS lexicons, and (c) to highlight particular features of the LISREL 8 and PRELIS 2 progams that address important caveats related to SEM analyses. This book is intended neither as a text on the topic of SEM, nor as a comprehensive review of the many statistical funcitons available in the LISREL 8 and PRELIS 2 programs. Rather, the intent is to provide a practical guide to SEM using the LISREL approach. As such, the reader is "walked through" a diversity of SEM applications that include both factor analytic and full latent variable models, as well as a variety of data management procedures.

Structural Equation Modeling

Concepts, Issues, and Applications

Author: Rick H. Hoyle

Publisher: SAGE

ISBN:

Category: Social Science

Page: 289

View: 755

This largely nontechnical volume reviews some of the major issues facing researchers who wish to use structural equation modeling. Individual chapters present recent developments on specification, estimation and testing, statistical power, software comparisons and analyzing multitrait/multimethod data. Numerous examples of applications are given and attention is paid to the underlying philosophy of structural equation modeling and to writing up results from structural equation modeling analyses.

A Beginner's Guide to Structural Equation Modeling

Fourth Edition

Author: Randall E. Schumacker

Publisher: Routledge

ISBN:

Category: Psychology

Page: 372

View: 947

Noted for its crystal clear explanations, this book is considered the most comprehensive introductory text to structural equation modeling (SEM). Noted for its thorough review of basic concepts and a wide variety of models, this book better prepares readers to apply SEM to a variety of research questions. Programming details and the use of algebra are kept to a minimum to help readers easily grasp the concepts so they can conduct their own analysis and critique related research. Featuring a greater emphasis on statistical power and model validation than other texts, each chapter features key concepts, examples from various disciplines, tables and figures, a summary, and exercises. Highlights of the extensively revised 4th edition include: -Uses different SEM software (not just Lisrel) including Amos, EQS, LISREL, Mplus, and R to demonstrate applications. -Detailed introduction to the statistical methods related to SEM including correlation, regression, and factor analysis to maximize understanding (Chs. 1 – 6). -The 5 step approach to modeling data (specification, identification, estimation, testing, and modification) is now covered in more detail and prior to the modeling chapters to provide a more coherent view of how to create models and interpret results (ch. 7). -More discussion of hypothesis testing, power, sampling, effect sizes, and model fit, critical topics for beginning modelers (ch. 7). - Each model chapter now focuses on one technique to enhance understanding by providing more description, assumptions, and interpretation of results, and an exercise related to analysis and output (Chs. 8 -15). -The use of SPSS AMOS diagrams to describe the theoretical models. -The key features of each of the software packages (Ch. 1). -Guidelines for reporting SEM research (Ch. 16). -www.routledge.com/9781138811935 which provides access to data sets that can be used with any program, links to other SEM examples, related readings, and journal articles, and more. Reorganized, the new edition begins with a more detailed introduction to SEM including the various software packages available, followed by chapters on data entry and editing, and correlation which is critical to understanding how missing data, non-normality, measurement, and restriction of range in scores affects SEM analysis. Multiple regression, path, and factor models are then reviewed and exploratory and confirmatory factor analysis is introduced. These chapters demonstrate how observed variables share variance in defining a latent variables and introduce how measurement error can be removed from observed variables. Chapter 7 details the 5 SEM modeling steps including model specification, identification, estimation, testing, and modification along with a discussion of hypothesis testing and the related issues of power, and sample and effect sizes.Chapters 8 to 15 provide comprehensive introductions to different SEM models including Multiple Group, Second-Order CFA, Dynamic Factor, Multiple-Indicator Multiple-Cause, Mixed Variable and Mixture, Multi-Level, Latent Growth, and SEM Interaction Models. Each of the 5 SEM modeling steps is explained for each model along with an application. Chapter exercises provide practice with and enhance understanding of the analysis of each model. The book concludes with a review of SEM guidelines for reporting research. Designed for introductory graduate courses in structural equation modeling, factor analysis, advanced, multivariate, or applied statistics, quantitative techniques, or statistics II taught in psychology, education, business, and the social and healthcare sciences, this practical book also appeals to researchers in these disciplines. Prerequisites include an introduction to intermediate statistics that covers correlation and regression principles.

Structural Equation Modeling

Applications in Ecological and Evolutionary Biology

Author: Bruce H. Pugesek

Publisher: Cambridge University Press

ISBN:

Category: Nature

Page:

View: 115

Structural equation modelling (SEM) is a technique that is used to estimate, analyse and test models that specify relationships among variables. The ability to conduct such analyses is essential for many problems in ecology and evolutionary biology. This book begins by explaining the theory behind the statistical methodology, including chapters on conceptual issues, the implementation of an SEM study and the history of the development of SEM. The second section provides examples of analyses on biological data including multi-group models, means models, P-technique and time-series. The final section of the book deals with computer applications and contrasts three popular SEM software packages. Aimed specifically at biological researchers and graduate students, this book will serve as valuable resource for both learning and teaching the SEM methodology. Moreover, data sets and programs that are presented in the book can also be downloaded from a website to assist the learning process.