**Author**:

**Publisher:**

**ISBN:**

**Category:** Algebra

**Page:**

**View:** 130

Advances in Applied Mathematics and Approximation Theory: Contributions from AMAT 2012 is a collection of the best articles presented at “Applied Mathematics and Approximation Theory 2012,” an international conference held in Ankara, Turkey, May 17-20, 2012. This volume brings together key work from authors in the field covering topics such as ODEs, PDEs, difference equations, applied analysis, computational analysis, signal theory, positive operators, statistical approximation, fuzzy approximation, fractional analysis, semigroups, inequalities, special functions and summability. The collection will be a useful resource for researchers in applied mathematics, engineering and statistics.

The overall theme of the 2009 IAS/PCMI Graduate Summer School was connections between special values of $L$-functions and arithmetic, especially the Birch and Swinnerton-Dyer Conjecture and Stark's Conjecture. These conjectures are introduced and discussed in depth, and progress made over the last 30 years is described. This volume contains the written versions of the graduate courses delivered at the summer school. It would be a suitable text for advanced graduate topics courses on the Birch and Swinnerton-Dyer Conjecture and/or Stark's Conjecture. The book will also serve as a reference volume for experts in the field.

The papers in this volume are based on the talks given at the conference on quantum groups dedicated to the memory of Joseph Donin, which was held at the Technion Institute, Haifa, Israel in July 2004. A survey of Donin's distinguished mathematical career is included. Several articles, which were directly influenced by the research of Donin and his colleagues, deal with invariant quantization, dynamical $R$-matrices, Poisson homogeneous spaces, and reflection equation algebras. The topics of other articles include Hecke symmetries, orbifolds, set-theoretic solutions to the pentagon equations, representations of quantum current algebras, unipotent crystals, the Springer resolution, the Fourier transform on Hopf algebras, and, as a change of pace, the combinatorics of smoothly knotted surfaces. The articles all contain important new contributions to their respective areas and will be of great interest to graduate students and research mathematicians interested in Hopf algebras, quantum groups, and applications.

Handbook of Differential Equations: Evolutionary Equations is the last text of a five-volume reference in mathematics and methodology. This volume follows the format set by the preceding volumes, presenting numerous contributions that reflect the nature of the area of evolutionary partial differential equations. The book is comprised of five chapters that feature the following: • A thorough discussion of the shallow-equations theory, which is used as a model for water waves in rivers, lakes and oceans. It covers the issues of modeling, analysis and applications. • Evaluation of the singular limits of reaction-diffusion systems, where the reaction is fast compared to the other processes; and applications that range from the theory of the evolution of certain biological processes to the phenomena of Turing and cross-diffusion instability • Detailed discussion of numerous problems arising from nonlinear optics, at the high-frequency and high-intensity regime • Geometric and diffractive optics, including wave interactions • Presentation of the issues of existence, blow-up and asymptotic stability of solutions, from the equations of solutions to the equations of linear and non-linear thermoelasticity • Answers to questions about unique space, such as continuation and backward uniqueness for linear second-order parabolic equations. Research mathematicians, mathematics lecturers and instructors, and academic students will find this book invaluable. - Review of new results in the area - Continuation of previous volumes in the handbook series covering evolutionary PDEs - New content coverage of DE applications

The four-volume set LNCS 2657, LNCS 2658, LNCS 2659, and LNCS 2660 constitutes the refereed proceedings of the Third International Conference on Computational Science, ICCS 2003, held concurrently in Melbourne, Australia and in St. Petersburg, Russia in June 2003. The four volumes present more than 460 reviewed contributed and invited papers and span the whole range of computational science, from foundational issues in computer science and algorithmic mathematics to advanced applications in virtually all application fields making use of computational techniques. These proceedings give a unique account of recent results in the field.