**Author**: Paul C. DuChateau

**Publisher:** McGraw Hill Professional

**ISBN:**

**Category:** Mathematics

**Page:** 241

**View:** 921

Covers elliptic, evolution, and first-order equations, integral transforms, and Green's functions, and includes sample exercises

The ideal review for your partial differential equations course More than 40 million students have trusted Schaum’s Outlines for their expert knowledge and helpful solved problems. Written by renowned experts in their respective fields, Schaum’s Outlines cover everything from math to science, nursing to language. The main feature for all these books is the solved problems. Step-by-step, authors walk readers through coming up with solutions to exercises in their topic of choice. 290 fully worked problems of varying difficulty Clear, concise explanations of differential and difference methods Help with variation formulation of boundary value problems and variation approximation methods Outline format supplies a concise guide to the standard college course in partial differential equations Appropriate for the following courses: Partial Differential Equations I, Partial Differential Equations II, Applied Math I, Applied Math II Complete course content in easy-to-follow outline form. Hundreds of solved problems

Confusing Textbooks? Missed Lectures? Tough Test Questions? Fortunately for you, there's Schaum's Outlines. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applications Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores! Schaum's Outlines-Problem Solved.

DIVBook focuses mainly on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included. /div

Topics not usually found in books at this level include but examined in this text: the application of linear and nonlinear first-order PDEs to the evolution of population densities and to traffic shocks convergence of numerical solutions of PDEs and implementation on a computer convergence of Laplace series on spheres quantum mechanics of the hydrogen atom solving PDEs on manifolds The text requires some knowledge of calculus but none on differential equations or linear algebra.

Tough Test Questions? Missed Lectures? Not Enough Time? Fortunately for you, there's Schaum's. More than 40 million students have trusted Schaum's Outlines to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you: Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applications Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores! Schaum's Outlines-Problem Solved.

An Introduction to Partial Differential Equations with MATLAB®, Second Edition illustrates the usefulness of PDEs through numerous applications and helps students appreciate the beauty of the underlying mathematics. Updated throughout, this second edition of a bestseller shows students how PDEs can model diverse problems, including the flow of heat, the propagation of sound waves, the spread of algae along the ocean’s surface, the fluctuation in the price of a stock option, and the quantum mechanical behavior of a hydrogen atom. Suitable for a two-semester introduction to PDEs and Fourier series for mathematics, physics, and engineering students, the text teaches the equations based on method of solution. It provides both physical and mathematical motivation as much as possible. The author treats problems in one spatial dimension before dealing with those in higher dimensions. He covers PDEs on bounded domains and then on unbounded domains, introducing students to Fourier series early on in the text. Each chapter’s prelude explains what and why material is to be covered and considers the material in a historical setting. The text also contains many exercises, including standard ones and graphical problems using MATLAB. While the book can be used without MATLAB, instructors and students are encouraged to take advantage of MATLAB’s excellent graphics capabilities. The MATLAB code used to generate the tables and figures is available in an appendix and on the author’s website.

Partial Differential Equations for Mathematical Physicists is intended for graduate students, researchers of theoretical physics and applied mathematics, and professionals who want to take a course in partial differential equations. This book offers the essentials of the subject with the prerequisite being only an elementary knowledge of introductory calculus, ordinary differential equations, and certain aspects of classical mechanics. We have stressed more the methodologies of partial differential equations and how they can be implemented as tools for extracting their solutions rather than dwelling on the foundational aspects. After covering some basic material, the book proceeds to focus mostly on the three main types of second order linear equations, namely those belonging to the elliptic, hyperbolic, and parabolic classes. For such equations a detailed treatment is given of the derivation of Green's functions, and of the roles of characteristics and techniques required in handling the solutions with the expected amount of rigor. In this regard we have discussed at length the method of separation variables, application of Green's function technique, and employment of Fourier and Laplace's transforms. Also collected in the appendices are some useful results from the Dirac delta function, Fourier transform, and Laplace transform meant to be used as supplementary materials to the text. A good number of problems is worked out and an equally large number of exercises has been appended at the end of each chapter keeping in mind the needs of the students. It is expected that this book will provide a systematic and unitary coverage of the basics of partial differential equations. Key Features An adequate and substantive exposition of the subject. Covers a wide range of important topics. Maintains mathematical rigor throughout. Organizes materials in a self-contained way with each chapter ending with a summary. Contains a large number of worked out problems.