**Author**: Hermann Weyl

**Publisher:** Princeton University Press

**ISBN:**

**Category:** Mathematics

**Page:** 311

**View:** 363

History of mathematics.

In his long-awaited new edition of Philosophy of Mathematics, James Robert Brown tackles important new as well as enduring questions in the mathematical sciences. Can pictures go beyond being merely suggestive and actually prove anything? Are mathematical results certain? Are experiments of any real value? This clear and engaging book takes a unique approach, encompassing non-standard topics such as the role of visual reasoning, the importance of notation, and the place of computers in mathematics, as well as traditional topics such as formalism, Platonism, and constructivism. The combination of topics and clarity of presentation make it suitable for beginners and experts alike. The revised and updated second edition of Philosophy of Mathematics contains more examples, suggestions for further reading, and expanded material on several topics including a novel approach to the continuum hypothesis.

First published in 2005. Routledge is an imprint of Taylor & Francis, an informa company.

The traditional debate among philosophers of mathematics is whether there is an external mathematical reality, something out there to be discovered, or whether mathematics is the product of the human mind. This provocative book, now available in a revised and expanded paperback edition, goes beyond foundationalist questions to offer what has been called a "postmodern" assessment of the philosophy of mathematics--one that addresses issues of theoretical importance in terms of mathematical experience. By bringing together essays of leading philosophers, mathematicians, logicians, and computer scientists, Thomas Tymoczko reveals an evolving effort to account for the nature of mathematics in relation to other human activities. These accounts include such topics as the history of mathematics as a field of study, predictions about how computers will influence the future organization of mathematics, and what processes a proof undergoes before it reaches publishable form. This expanded edition now contains essays by Penelope Maddy, Michael D. Resnik, and William P. Thurston that address the nature of mathematical proofs. The editor has provided a new afterword and a supplemental bibliography of recent work.

This is a charming and insightful contribution to an understanding of the "Science Wars" between postmodernist humanism and science, driving toward a resolution of the mutual misunderstanding that has driven the controversy. It traces the root of postmodern theory to a debate on the foundations of mathematics early in the 20th century, then compares developments in mathematics to what took place in the arts and humanities, discussing issues as diverse as literary theory, arts, and artificial intelligence. This is a straightforward, easily understood presentation of what can be difficult theoretical concepts It demonstrates that a pattern of misreading mathematics can be seen both on the part of science and on the part of postmodern thinking. This is a humorous, playful yet deeply serious look at the intellectual foundations of mathematics for those in the humanities and the perfect critical introduction to the bases of modernism and postmodernism for those in the sciences.

A collection of American poems written for children or traditionally enjoyed by children, by such authors as Longfellow, Poe, Eugene Field, Langston Hughes, Dr. Seuss, and Jack Prelutsky.

This volume presents a selection of papers from the Poincaré Project of the Center for the Philosophy of Science, University of Lisbon, bringing together an international group of scholars with new assessments of Henri Poincaré's philosophy of science—both its historical impact on the foundations of science and mathematics, and its relevance to contemporary philosophical inquiry. The work of Poincaré (1854-1912) extends over many fields within mathematics and mathematical physics. But his scientific work was inseparable from his groundbreaking philosophical reflections, and the scientific ferment in which he participated was inseparable from the philosophical controversies in which he played a pre-eminent part. The subsequent history of the mathematical sciences was profoundly influenced by Poincaré’s philosophical analyses of the relations between and among mathematics, logic, and physics, and, more generally, the relations between formal structures and the world of experience. The papers in this collection illuminate Poincaré’s place within his own historical context as well as the implications of his work for ours.

For the majority of the twentieth century, philosophers of mathematics focused their attention on foundational questions. However, in the last quarter of the century they began to return to basics, and two new schools of thought were created: social constructivism and structuralism. The advent of the computer also led to proofs and development of mathematics assisted by computer, and to questions concerning the role of the computer in mathematics. This book of sixteen original essays is the first to explore this range of new developments in the philosophy of mathematics, in a language accessible to mathematicians. Approximately half the essays were written by mathematicians, and consider questions that philosophers have not yet discussed. The other half, written by philosophers of mathematics, summarise the discussion in that community during the last 35 years. A connection is made in each case to issues relevant to the teaching of mathematics.

The seventeenth century saw dramatic advances in mathematical theory and practice. With the recovery of many of the classical Greek mathematical texts, new techniques were introduced, and within 100 years, the rules of analytic geometry, geometry of indivisibles, arithmetic of infinites, and calculus were developed. Although many technical studies have been devoted to these innovations, Mancosu provides the first comprehensive account of the relationship between mathematical advances of the seventeenth century and the philosophy of mathematics of the period. Starting with the Renaissance debates on the certainty of mathematics, Mancosu leads the reader through the foundational issues raised by the emergence of these new mathematical techniques, including the influence of the Aristotelian conception of science in Cavalieri and Guldin, the foundational relevance of Descartes' Geometrie, the relation between geometrical and epistemological theories of the infinite, and the Leibnizian calculus and the opposition to infinitesimalist procedures. In the process Mancosu draws a sophisticated picture of the subtle dependencies between technical development and philosophical reflection in seventeenth century mathematics.