Nonlinear Optimization and Related Topics

Author: Gianni Pillo

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 492

View: 281

This volume contains the edited texts of the lectures presented at the Workshop on Nonlinear Optimization held in Erice, Sicily, at the "G. Stampacchia" School of Mathematics of the "E. Majorana" Centre for Scientific Culture, June 23 -July 2, 1998. In the tradition of these meetings, the main purpose was to review and discuss recent advances and promising research trends concerning theory, algorithms and innovative applications in the field of Nonlinear Optimization, and of related topics such as Convex Optimization, Nonsmooth Optimization, Variational Inequalities and Complementarity Problems. The meeting was attended by 83 people from 21 countries. Besides the lectures, several formal and informal discussions took place. The result was a wide and deep knowledge of the present research tendencies in the field. We wish to express our appreciation for the active contribution of all the par ticipants in the meeting. Our gratitude is due to the Ettore Majorana Centre in Erice, which offered its facilities and rewarding environment: its staff was certainly instrumental for the success of the meeting. Our gratitude is also due to Francisco Facchinei and Massimo Roma for the effort and time devoted as members of the Organising Committee. We are indebted to the Italian National Research Council, and in particular to the Group on Functional Analysis and its Applications and to the Committees on Engineering Sciences and on Information Sciences and Technolo gies for their financial support. Finally, we address our thanks to Kluwer Academic Publishers for having offered to publish this volume.

Nonlinear Optimization

Author: Andrzej Ruszczynski

Publisher: Princeton University Press

ISBN:

Category: Mathematics

Page: 464

View: 972

Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern topics such as optimality conditions and numerical methods for problems involving nondifferentiable functions, semidefinite programming, metric regularity and stability theory of set-constrained systems, and sensitivity analysis of optimization problems. Based on a decade's worth of notes the author compiled in successfully teaching the subject, this book will help readers to understand the mathematical foundations of the modern theory and methods of nonlinear optimization and to analyze new problems, develop optimality theory for them, and choose or construct numerical solution methods. It is a must for anyone seriously interested in optimization.

Linear and Nonlinear Optimization

Author: Richard W. Cottle

Publisher: Springer

ISBN:

Category: Business & Economics

Page: 614

View: 879

​This textbook on Linear and Nonlinear Optimization is intended for graduate and advanced undergraduate students in operations research and related fields. It is both literate and mathematically strong, yet requires no prior course in optimization. As suggested by its title, the book is divided into two parts covering in their individual chapters LP Models and Applications; Linear Equations and Inequalities; The Simplex Algorithm; Simplex Algorithm Continued; Duality and the Dual Simplex Algorithm; Postoptimality Analyses; Computational Considerations; Nonlinear (NLP) Models and Applications; Unconstrained Optimization; Descent Methods; Optimality Conditions; Problems with Linear Constraints; Problems with Nonlinear Constraints; Interior-Point Methods; and an Appendix covering Mathematical Concepts. Each chapter ends with a set of exercises. The book is based on lecture notes the authors have used in numerous optimization courses the authors have taught at Stanford University. It emphasizes modeling and numerical algorithms for optimization with continuous (not integer) variables. The discussion presents the underlying theory without always focusing on formal mathematical proofs (which can be found in cited references). Another feature of this book is its inclusion of cultural and historical matters, most often appearing among the footnotes. "This book is a real gem. The authors do a masterful job of rigorously presenting all of the relevant theory clearly and concisely while managing to avoid unnecessary tedious mathematical details. This is an ideal book for teaching a one or two semester masters-level course in optimization – it broadly covers linear and nonlinear programming effectively balancing modeling, algorithmic theory, computation, implementation, illuminating historical facts, and numerous interesting examples and exercises. Due to the clarity of the exposition, this book also serves as a valuable reference for self-study." Professor Ilan Adler, IEOR Department, UC Berkeley "A carefully crafted introduction to the main elements and applications of mathematical optimization. This volume presents the essential concepts of linear and nonlinear programming in an accessible format filled with anecdotes, examples, and exercises that bring the topic to life. The authors plumb their decades of experience in optimization to provide an enriching layer of historical context. Suitable for advanced undergraduates and masters students in management science, operations research, and related fields." Michael P. Friedlander, IBM Professor of Computer Science, Professor of Mathematics, University of British Columbia

High Performance Algorithms and Software for Nonlinear Optimization

Author: Gianni Pillo

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 416

View: 317

This volume contains the edited texts of the lectures presented at the Workshop on High Performance Algorithms and Software for Nonlinear Optimization held in Erice, Sicily, at the "G. Stampacchia" School of Mathematics of the "E. Majorana" Centre for Scientific Culture, June 30 - July 8, 2001. In the first year of the new century, the aim of the Workshop was to assess the past and to discuss the future of Nonlinear Optimization, and to highlight recent achieve ments and promising research trends in this field. An emphasis was requested on algorithmic and high performance software developments and on new computational experiences, as well as on theoretical advances. We believe that such goal was basically achieved. The Workshop was attended by 71 people from 22 countries. Although not all topics were covered, the presentations gave indeed a wide overview of the field, from different and complementary stand points. Besides the lectures, several formal and informal discussions took place. We wish to express our appreciation for the active contribution of all the participants in the meeting. The 18 papers included in this volume represent a significant selection of the most recent developments in nonlinear programming theory and practice. They show that there is plenty of exciting ideas, implementation issues and new applications which produce a very fast evolution in the field.

Introduction to the Theory of Nonlinear Optimization

Author: Johannes Jahn

Publisher: Springer Nature

ISBN:

Category: Business & Economics

Page: 323

View: 552

This book serves as an introductory text to optimization theory in normed spaces and covers all areas of nonlinear optimization. It presents fundamentals with particular emphasis on the application to problems in the calculus of variations, approximation and optimal control theory. The reader is expected to have a basic knowledge of linear functional analysis.

Linear Programming, Sensitivity Analysis and Related Topics

Author: Marie-France Derhy

Publisher:

ISBN:

Category: Mathematics

Page: 442

View: 266

This book covers all aspects of linear programming from the two-dimensional LPs and their extension to higher dimensional LPs, through duality and sensitivity analysis and finally to the examination of commented software outputs. The book is organised into three distinct parts: the first part studies the concepts of linear programming and presents its founding theorems complete with proofs and applications; the second part presents linear programming in the diversity of its variants (Integer Programming, Game Theory, Transportation Problem, Assignment Model), and highlights the modelling problems that are involved in network optimisation; the final part furthers the discussion on selected topics and presents an opening to nonlinear programming through quadratic programming.

Introduction to Nonlinear Optimization

Theory, Algorithms, and Applications with MATLAB

Author: Amir Beck

Publisher: SIAM

ISBN:

Category: Mathematics

Page: 282

View: 315

This book provides the foundations of the theory of nonlinear optimization as well as some related algorithms and presents a variety of applications from diverse areas of applied sciences. The author combines three pillars of optimization?theoretical and algorithmic foundation, familiarity with various applications, and the ability to apply the theory and algorithms on actual problems?and rigorously and gradually builds the connection between theory, algorithms, applications, and implementation. Readers will find more than 170 theoretical, algorithmic, and numerical exercises that deepen and enhance the reader's understanding of the topics. The author includes offers several subjects not typically found in optimization books?for example, optimality conditions in sparsity-constrained optimization, hidden convexity, and total least squares. The book also offers a large number of applications discussed theoretically and algorithmically, such as circle fitting, Chebyshev center, the Fermat?Weber problem, denoising, clustering, total least squares, and orthogonal regression and theoretical and algorithmic topics demonstrated by the MATLAB? toolbox CVX and a package of m-files that is posted on the book?s web site.

Nonlinear and Mixed-Integer Optimization

Fundamentals and Applications

Author: Christodoulos A. Floudas

Publisher: Oxford University Press

ISBN:

Category: Science

Page: 480

View: 989

Filling a void in chemical engineering and optimization literature, this book presents the theory and methods for nonlinear and mixed-integer optimization, and their applications in the important area of process synthesis. Other topics include modeling issues in process synthesis, and optimization-based approaches in the synthesis of heat recovery systems, distillation-based systems, and reactor-based systems. The basics of convex analysis and nonlinear optimization are also covered and the elementary concepts of mixed-integer linear optimization are introduced. All chapters have several illustrations and geometrical interpretations of the material as well as suggested problems. Nonlinear and Mixed-Integer Optimization will prove to be an invaluable source--either as a textbook or a reference--for researchers and graduate students interested in continuous and discrete nonlinear optimization issues in engineering design, process synthesis, process operations, applied mathematics, operations research, industrial management, and systems engineering.

Linear and Nonlinear Optimization

Second Edition

Author: Igor Griva

Publisher: SIAM

ISBN:

Category: Linear programming

Page: 742

View: 362

Provides an introduction to the applications, theory, and algorithms of linear and nonlinear optimization. The emphasis is on practical aspects - discussing modern algorithms, as well as the influence of theory on the interpretation of solutions or on the design of software. The book includes several examples of realistic optimization models that address important applications. The succinct style of this second edition is punctuated with numerous real-life examples and exercises, and the authors include accessible explanations of topics that are not often mentioned in textbooks, such as duality in nonlinear optimization, primal-dual methods for nonlinear optimization, filter methods, and applications such as support-vector machines. The book is designed to be flexible. It has a modular structure, and uses consistent notation and terminology throughout. It can be used in many different ways, in many different courses, and at many different levels of sophistication.

Convex Analysis and Nonlinear Optimization

Theory and Examples

Author: Jonathan M. Borwein

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 273

View: 635

This book provides a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. It can serve as a teaching text, at roughly the level of first year graduate students, since the main body of the text is self-contained, with each section rounded off by an often extensive set of optional exercises. The new edition adds material on semismooth optimization, as well as several new proofs that will make this book even more self-contained.

Nonlinear Programming

Theory and Algorithms

Author: Mokhtar S. Bazaraa

Publisher: John Wiley & Sons

ISBN:

Category: Mathematics

Page: 872

View: 527

COMPREHENSIVE COVERAGE OF NONLINEAR PROGRAMMING THEORY AND ALGORITHMS, THOROUGHLY REVISED AND EXPANDED Nonlinear Programming: Theory and Algorithms—now in an extensively updated Third Edition—addresses the problem of optimizing an objective function in the presence of equality and inequality constraints. Many realistic problems cannot be adequately represented as a linear program owing to the nature of the nonlinearity of the objective function and/or the nonlinearity of any constraints. The Third Edition begins with a general introduction to nonlinear programming with illustrative examples and guidelines for model construction. Concentration on the three major parts of nonlinear programming is provided: Convex analysis with discussion of topological properties of convex sets, separation and support of convex sets, polyhedral sets, extreme points and extreme directions of polyhedral sets, and linear programming Optimality conditions and duality with coverage of the nature, interpretation, and value of the classical Fritz John (FJ) and the Karush-Kuhn-Tucker (KKT) optimality conditions; the interrelationships between various proposed constraint qualifications; and Lagrangian duality and saddle point optimality conditions Algorithms and their convergence, with a presentation of algorithms for solving both unconstrained and constrained nonlinear programming problems Important features of the Third Edition include: New topics such as second interior point methods, nonconvex optimization, nondifferentiable optimization, and more Updated discussion and new applications in each chapter Detailed numerical examples and graphical illustrations Essential coverage of modeling and formulating nonlinear programs Simple numerical problems Advanced theoretical exercises The book is a solid reference for professionals as well as a useful text for students in the fields of operations research, management science, industrial engineering, applied mathematics, and also in engineering disciplines that deal with analytical optimization techniques. The logical and self-contained format uniquely covers nonlinear programming techniques with a great depth of information and an abundance of valuable examples and illustrations that showcase the most current advances in nonlinear problems.

Mathematical Programming with Data Perturbations

Author: Anthony V. Fiacco

Publisher: CRC Press

ISBN:

Category: Mathematics

Page:

View: 520

Presents research contributions and tutorial expositions on current methodologies for sensitivity, stability and approximation analyses of mathematical programming and related problem structures involving parameters. The text features up-to-date findings on important topics, covering such areas as the effect of perturbations on the performance of algorithms, approximation techniques for optimal control problems, and global error bounds for convex inequalities.

Variational Analysis

Author: R. Tyrrell Rockafellar

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 736

View: 953

From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.

Encyclopedia of Optimization

Author: Christodoulos A. Floudas

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 4622

View: 239

The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".

Encyclopedia of Operations Research and Management Science

Author: Saul I. Gass

Publisher: Springer Science & Business Media

ISBN:

Category: Business & Economics

Page: 753

View: 894

Operations Research: 1934-1941," 35, 1, 143-152; "British The goal of the Encyclopedia of Operations Research and Operational Research in World War II," 35, 3, 453-470; Management Science is to provide to decision makers and "U. S. Operations Research in World War II," 35, 6, 910-925; problem solvers in business, industry, government and and the 1984 article by Harold Lardner that appeared in academia a comprehensive overview of the wide range of Operations Research: "The Origin of Operational Research," ideas, methodologies, and synergistic forces that combine to 32, 2, 465-475. form the preeminent decision-aiding fields of operations re search and management science (OR/MS). To this end, we The Encyclopedia contains no entries that define the fields enlisted a distinguished international group of academics of operations research and management science. OR and MS and practitioners to contribute articles on subjects for are often equated to one another. If one defines them by the which they are renowned. methodologies they employ, the equation would probably The editors, working with the Encyclopedia's Editorial stand inspection. If one defines them by their historical Advisory Board, surveyed and divided OR/MS into specific developments and the classes of problems they encompass, topics that collectively encompass the foundations, applica the equation becomes fuzzy. The formalism OR grew out of tions, and emerging elements of this ever-changing field. We the operational problems of the British and U. s. military also wanted to establish the close associations that OR/MS efforts in World War II.