Proceedings of the Summer Research Institute : the Result of the Thirty-first Summer Research Institute of the American Mathematical Society; Berkeley - Calif., July 11-29, 1983

The greatest mathematicians, such as Archimedes, Newton, and Gauss, always united theory and applications in equal measure. Felix Klein There exists the remarkable possibility that one can master a subject mathemati cally, without really understanding its essence. Albert Einstein Don't give us numbers: give us insight! A contemporary natural scientist to a mathematician Numerous questions in physics, chemistry, biology, and economics lead to nonlinear problems; for example, deformation of rods, plates, and shells; behavior of plastic materials; surface waves of fluids; flows around objects in fluids or gases; shock waves in gases; movement of viscous fluids; equilibrium forms of rotating fluids in astrophysics; determination of the shape of the earth through gravitational measu- ments; behavior of magnetic fields of astrophysical objects; melting processes; chemical reactions; heat radiation; processes in nuclear reactors; nonlinear oscillation in physics, chemistry, and biology; 2 Introduction existence and stability of periodic and quasiperiodic orbits in celestial mechanics; stability of physical, chemical, biological, ecological, and economic processes; diffusion processes in physics, chemistry, and biology; processes with entropy production, and self-organization of systems in physics, chemistry, and biology; study of the electrical potential variation in the heart through measure ments on the body surface to prevent heart attacks; determining material constants or material laws (e. g.

As long as a branch of knowledge offers an abundance of problems, it is full of vitality. David Hilbert Over the last 15 years I have given lectures on a variety of problems in nonlinear functional analysis and its applications. In doing this, I have recommended to my students a number of excellent monographs devoted to specialized topics, but there was no complete survey-type exposition of nonlinear functional analysis making available a quick survey to the wide range of readers including mathematicians, natural scientists, and engineers who have only an elementary knowledge of linear functional analysis. I have tried to close this gap with my five-part lecture notes, the first three parts of which have been published in the Teubner-Texte series by Teubner-Verlag, Leipzig, 1976, 1977, and 1978. The present English edition was translated from a completely rewritten manuscript which is significantly longer than the original version in the Teubner-Texte series. The material is organized in the following way: Part I: Fixed Point Theorems. Part II: Monotone Operators. Part III: Variational Methods and Optimization. Parts IV jV: Applications to Mathematical Physics. The exposition is guided by the following considerations: (a) What are the supporting basic ideas and what intrinsic interrelations exist between them? (/3) In what relation do the basic ideas stand to the known propositions of classical analysis and linear functional analysis? ( y) What typical applications are there? Vll Preface viii Special emphasis is placed on motivation.

As long as a branch of knowledge offers an abundance of problems, it is full of vitality. David Hilbert Over the last 15 years I have given lectures on a variety of problems in nonlinear functional analysis and its applications. In doing this, I have recommended to my students a number of excellent monographs devoted to specialized topics, but there was no complete survey-type exposition of nonlinear functional analysis making available a quick survey to the wide range of readers including mathematicians, natural scientists, and engineers who have only an elementary knowledge of linear functional analysis. I have tried to close this gap with my five-part lecture notes, the first three parts of which have been published in the Teubner-Texte series by Teubner-Verlag, Leipzig, 1976, 1977, and 1978. The present English edition was translated from a completely rewritten manuscript which is significantly longer than the original version in the Teubner-Texte series. The material is organized in the following way: Part I: Fixed Point Theorems. Part II: Monotone Operators. Part III: Variational Methods and Optimization. Parts IV jV: Applications to Mathematical Physics. The exposition is guided by the following considerations: (a) What are the supporting basic ideas and what intrinsic interrelations exist between them? (/3) In what relation do the basic ideas stand to the known propositions of classical analysis and linear functional analysis? ( y) What typical applications are there? Vll Preface viii Special emphasis is placed on motivation.

Proceedings of an Advanced Seminar Conducted by the Mathematics Research Center, the University of Wisconsin, Madison, October 12-14, 1970

Author: Louis B. Rall

Publisher: Elsevier

ISBN:

Category: Mathematics

Page: 594

View: 305

Nonlinear Functional Analysis and Applications provides information pertinent to the fundamental aspects of nonlinear functional analysis and its application. This book provides an introduction to the basic concepts and techniques of this field. Organized into nine chapters, this book begins with an overview of the possibilities for applying ideas from functional analysis to problems in analysis. This text then provides a systematic exposition of several aspects of differential calculus in norms and topological linear spaces. Other chapters consider the various settings in nonlinear functional analysis in which differentials play a significant role. This book discusses as well the generalized inverse for a bounded linear operator, whose range is not necessarily closed. The final chapter deals with the equations of hydrodynamics, which are usually highly nonlinear and difficult to solve. This book is a valuable resource for mathematicians. Readers who are interested in nonlinear functional analysis will also find this book useful.