Nitroxide Spin Labels

Reactions in Biology and Chemistry

Author: Nickolai Kocherginsky

Publisher: CRC Press

ISBN:

Category: Science

Page: 288

View: 886

Extending the use of nitroxides as probes into more complex systems such as viable cells and whole animals requires greater knowledge of their interactions in functioning biological systems and appropriate model systems. Nitroxide Spin Labels: Reactions in Biology and Chemistry presents information essential for research in this area. Nitroxide research offers the promise of important new ways of measuring metabolism and will be useful in the diagnosis of important disease categories such as cancer, inflammation, and ischemia.

Structural Information from Spin-Labels and Intrinsic Paramagnetic Centres in the Biosciences

Author: Christiane R. Timmel

Publisher: Springer

ISBN:

Category: Science

Page: 322

View: 187

Pulse Dipolar Electron Spin Resonance: Distance Measurements by Peter P. Borbat, Jack H. Freed.Interpretation of Dipolar EPR Data in Terms of Protein Structure, by Gunnar Jeschke.Site-Directed Nitroxide Spin Labeling of Biopolymers, by Sandip A. Shelke and Snorri Th. Sigurdsson. Metal-Based Spin Labeling for Distance Determination, by Daniella Goldfarb. Structural Information from Spin-Labelled Membrane-Bound Proteins, by Johann P. KLare, Heinz-Jürgen Steinhoff. Structural Information from Oligonucleotides, by Richard Ward and Olav Schiemann. Orientation selective DEER using rigid spin labels, cofactors, metals, and clusters, by Claudia E. Tait, Alice M. Bowen, Christiane R. Timmel, Jeffrey Harmer

Spin Labeling

Theory and Applications

Author: Lawrence J. Berliner

Publisher: Springer Science & Business Media

ISBN:

Category: Science

Page: 670

View: 946

We present this special topics volume on an area which has not received thorough coverage for over 12 years. Spin Labeling: Theory and Applications represents a complete update on new theoretical aspects and applications of the spin-label method. In the "line-shape theory" sections, we are especially pleased to include an IBM-compatible diskette supplied by David Schneider and Jack Freed which contains fast, accurate, ready-to-use software for slow-motion simulations. Barney Bales discusses inhomogeneous broadening phenomena in detail. Several developments in techniques and interpretation in saturation transfer spectroscopy have appeared since the publica tion of Spin Labeling II: Theory and Applications (L. J. Berliner, ed., Academic Press, 1979). We have included an up-to-date chapter on spin-label applications by M. A. Hemminga and P. A. de Jager. By incorporating 15N and deuterium into nitroxide spin labels, several unique advantages are derived in line-shape analysis. Albert Beth and Bruce Robinson have contributed a detailed chapter on the analysis of these labels in the slow-motion regime while Jane Park and Wolfgang Trommer present the advantages for specific biochemical examples in our "applications" section. Derek Marsh's contri bution on spin-label spectral analysis may be regarded as a summary chapter which touches on several of the detailed spectral analysis methods described in the earlier chapters.

Molecular Modeling of Nitroxide Spin Labels

Methods Development and Applications

Author: Kenneth Louis Sale

Publisher:

ISBN:

Category: Electron paramagnetic resonance spectroscopy

Page: 650

View: 566

Distance Measurements Using Pulsed EPR

Noncovalently Bound Nitroxide and Trityl Spin Labels

Author: Gunnar Widtfeldt Reginsson

Publisher:

ISBN:

Category: Biomolecules

Page: 254

View: 216

The function of biomacromolecules is controlled by their structure and conformational flexibility. Investigating the structure of biologically important macromolecules can, therefore, yield information that could explain their complex biological function. In addition to X ray crystallography and nuclear magnetic resonance (NMR) methods, pulsed electron paramagnetic resonance (EPR) methods, in particular the pulsed electron electron double resonance (PELDOR) technique has, during the last decade, become a valuable tool for structural determination of macromolecules. Long range distance constraints obtained from pulsed EPR measurements, make it possible to carry out structural refinements on structures from NMR and X ray methods. In addition, EPR yields distance distributions that give information about structural flexibility. The use of EPR for structural studies of biomacromolecules requires in most cases site specific incorporation of paramagnetic centres known as spin labelling. To date, spin labelling nucleic acids has required complex spin labelling chemistry. The first application of a site directed and noncovalent spin labelling method for distance measurements on DNA is described. It is demonstrated that noncovalent spin labelling with a rigid spin label can afford detailed information on internal DNA dynamics using PELDOR. Furthermore, it is shown that noncovalent spin labelling can be used to study DNA protein complexes. PELDOR can also yield information about spin label orientation. Therefore, spin labels with limited flexibility can be used to measure the relative orientation of the spin labelled sites. Although information on orientation can be obtained from 9.7 GHz PELDOR measurements in selected applications, measurements at 97 GHz or higher, increases orientation selection. It is shown that PELDOR measurements on semi rigid and rigid nitroxide biradicals using a home built high power 97 GHz EPR spectrometer (Hiper) and model based simulations yield quantitative information on spin label orientations and dynamics. The most widely used spin labels for EPR studies on biomacromolecules are the aminoxyl (nitroxide) radicals. The major drawbacks of nitroxide spin labels include low sensitivity for distance measurements, fast spin spin relaxation in solution and limited stability in reducing environments. Carbon centered triarylmethyl (trityl) radicals have properties that could eliminate some of the limitations of nitroxide spin labels. To evaluate the use of trityl spin labels for nanometer distance measurements, models systems with trityl and nitroxide spin labels were measured using PELDOR and Double Quantum Coherence (DQC). This study shows that trityl spin labels yield reliable information on interlabel distances and dynamics, establishing the trityl radical as a viable spin label for structural studies on biomacromolecules.

Spin Labeling

Theory and Applications

Author: Lawrence Berliner

Publisher: Springer

ISBN:

Category: Science

Page: 670

View: 743

We present this special topics volume on an area which has not received thorough coverage for over 12 years. Spin Labeling: Theory and Applications represents a complete update on new theoretical aspects and applications of the spin-label method. In the "line-shape theory" sections, we are especially pleased to include an IBM-compatible diskette supplied by David Schneider and Jack Freed which contains fast, accurate, ready-to-use software for slow-motion simulations. Barney Bales discusses inhomogeneous broadening phenomena in detail. Several developments in techniques and interpretation in saturation transfer spectroscopy have appeared since the publica tion of Spin Labeling II: Theory and Applications (L. J. Berliner, ed., Academic Press, 1979). We have included an up-to-date chapter on spin-label applications by M. A. Hemminga and P. A. de Jager. By incorporating 15N and deuterium into nitroxide spin labels, several unique advantages are derived in line-shape analysis. Albert Beth and Bruce Robinson have contributed a detailed chapter on the analysis of these labels in the slow-motion regime while Jane Park and Wolfgang Trommer present the advantages for specific biochemical examples in our "applications" section. Derek Marsh's contri bution on spin-label spectral analysis may be regarded as a summary chapter which touches on several of the detailed spectral analysis methods described in the earlier chapters.

Spin Labeling

Theory and Applications

Author: Lawrence J. Berliner

Publisher: Springer

ISBN:

Category: Science

Page: 670

View: 914

We present this special topics volume on an area which has not received thorough coverage for over 12 years. Spin Labeling: Theory and Applications represents a complete update on new theoretical aspects and applications of the spin-label method. In the "line-shape theory" sections, we are especially pleased to include an IBM-compatible diskette supplied by David Schneider and Jack Freed which contains fast, accurate, ready-to-use software for slow-motion simulations. Barney Bales discusses inhomogeneous broadening phenomena in detail. Several developments in techniques and interpretation in saturation transfer spectroscopy have appeared since the publica tion of Spin Labeling II: Theory and Applications (L. J. Berliner, ed., Academic Press, 1979). We have included an up-to-date chapter on spin-label applications by M. A. Hemminga and P. A. de Jager. By incorporating 15N and deuterium into nitroxide spin labels, several unique advantages are derived in line-shape analysis. Albert Beth and Bruce Robinson have contributed a detailed chapter on the analysis of these labels in the slow-motion regime while Jane Park and Wolfgang Trommer present the advantages for specific biochemical examples in our "applications" section. Derek Marsh's contri bution on spin-label spectral analysis may be regarded as a summary chapter which touches on several of the detailed spectral analysis methods described in the earlier chapters.