Multivariate Density Estimation

Theory, Practice, and Visualization

Author: David W. Scott

Publisher: John Wiley & Sons


Category: Mathematics

Page: 336

View: 980

Written to convey an intuitive feel for both theory and practice, its main objective is to illustrate what a powerful tool density estimation can be when used not only with univariate and bivariate data but also in the higher dimensions of trivariate and quadrivariate information. Major concepts are presented in the context of a histogram in order to simplify the treatment of advanced estimators. Features 12 four-color plates, numerous graphic illustrations as well as a multitude of problems and solutions.

Nonparametric Functional Data Analysis

Theory and Practice

Author: Frédéric Ferraty

Publisher: Springer Science & Business Media


Category: Mathematics

Page: 260

View: 605

Modern apparatuses allow us to collect samples of functional data, mainly curves but also images. On the other hand, nonparametric statistics produces useful tools for standard data exploration. This book links these two fields of modern statistics by explaining how functional data can be studied through parameter-free statistical ideas. At the same time it shows how functional data can be studied through parameter-free statistical ideas, and offers an original presentation of new nonparametric statistical methods for functional data analysis.

Handbook of Regression Methods

Author: Derek Scott Young

Publisher: CRC Press


Category: Mathematics

Page: 638

View: 737

Handbook of Regression Methods concisely covers numerous traditional, contemporary, and nonstandard regression methods. The handbook provides a broad overview of regression models, diagnostic procedures, and inference procedures, with emphasis on how these methods are applied. The organization of the handbook benefits both practitioners and researchers, who seek either to obtain a quick understanding of regression methods for specialized problems or to expand their own breadth of knowledge of regression topics. This handbook covers classic material about simple linear regression and multiple linear regression, including assumptions, effective visualizations, and inference procedures. It presents an overview of advanced diagnostic tests, remedial strategies, and model selection procedures. Finally, many chapters are devoted to a diverse range of topics, including censored regression, nonlinear regression, generalized linear models, and semiparametric regression. Features Presents a concise overview of a wide range of regression topics not usually covered in a single text Includes over 80 examples using nearly 70 real datasets, with results obtained using R Offers a Shiny app containing all examples, thus allowing access to the source code and the ability to interact with the analyses

Encyclopedia of Statistical Sciences

Author: Samuel Kotz

Publisher: Wiley-Interscience


Category: Mathematics

Page: 724

View: 558

Countless professionals and students who use statistics in their work rely on the multi-volume Encyclopedia of Statistical Sciences as a superior and unique source of information on statistical theory, methods, and applications. This new edition (available in both print and on-line versions) is designed to bring the encyclopedia in line with the latest topics and advances made in statistical science over the past decade--in areas such as computer-intensive statistical methodology, genetics, medicine, the environment, and other applications. Written by over 600 world-renowned experts (including the editors), the entries are self-contained and easily understood by readers with a limited statistical background. With the publication of this second edition in 16 printed volumes, the Encyclopedia of Statistical Sciences retains its position as a cutting-edge reference of choice for those working in statistics, biostatistics, quality control, economics, sociology, engineering, probability theory, computer science, biomedicine, psychology, and many other areas. The Encyclopedia of Statistical Sciences is also available as a 16 volume A to Z set. Volume 5: Gr-In.


Ninth International Conference on Scientific and Statistical Database Management, August 11-13, 1997, Olympia, Washington

Author: IEEE Computer Society

Publisher: Institute of Electrical & Electronics Engineers(IEEE)


Category: Computers

Page: 278

View: 464

Coverage in this text on database and information systems includes: fundamental issues in statistical database management; current problems in scientific databases; new systems; implementation methods; applications of data and process modelling; and requirements and design."

Wavelets and statistics

Author: Anestis Antoniadis

Publisher: Springer Verlag


Category: Mathematics

Page: 410

View: 194

Wavelets theory has found applications in a remarkable diversity of disciplines. The volume presents the proceedings of a conference held at Villard de Lans, France in 1994. Both statistical results and practical contributions were presented. The material is wide in scope and ranges from the development of new tools for nonparametric curve estimation to applied problems such as detection of transients in signal processing and image segmentation.

Operational Risk

Modeling Analytics

Author: Harry H. Panjer

Publisher: John Wiley & Sons


Category: Business & Economics

Page: 448

View: 190

Discover how to optimize business strategies from both qualitative and quantitative points of view Operational Risk: Modeling Analytics is organized around the principle that the analysis of operational risk consists, in part, of the collection of data and the building of mathematical models to describe risk. This book is designed to provide risk analysts with a framework of the mathematical models and methods used in the measurement and modeling of operational risk in both the banking and insurance sectors. Beginning with a foundation for operational risk modeling and a focus on the modeling process, the book flows logically to discussion of probabilistic tools for operational risk modeling and statistical methods for calibrating models of operational risk. Exercises are included in chapters involving numerical computations for students' practice and reinforcement of concepts. Written by Harry Panjer, one of the foremost authorities in the world on risk modeling and its effects in business management, this is the first comprehensive book dedicated to the quantitative assessment of operational risk using the tools of probability, statistics, and actuarial science. In addition to providing great detail of the many probabilistic and statistical methods used in operational risk, this book features: * Ample exercises to further elucidate the concepts in the text * Definitive coverage of distribution functions and related concepts * Models for the size of losses * Models for frequency of loss * Aggregate loss modeling * Extreme value modeling * Dependency modeling using copulas * Statistical methods in model selection and calibration Assuming no previous expertise in either operational risk terminology or in mathematical statistics, the text is designed for beginning graduate-level courses on risk and operational management or enterprise risk management. This book is also useful as a reference for practitioners in both enterprise risk management and risk and operational management.

Regression Analysis by Example

Author: Samprit Chatterjee

Publisher: John Wiley & Sons


Category: Mathematics

Page: 416

View: 358

The essentials of regression analysis through practical applications Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgement. Regression Analysis by Example, Fourth Edition has been expanded and thoroughly updated to reflect recent advances in the field. The emphasis continues to be on exploratory data analysis rather than statistical theory. The book offers in-depth treatment of regression diagnostics, transformation, multicollinearity, logistic regression, and robust regression. This new edition features the following enhancements: Chapter 12, Logistic Regression, is expanded to reflect the increased use of the logit models in statistical analysis A new chapter entitled Further Topics discusses advanced areas of regression analysis Reorganized, expanded, and upgraded exercises appear at the end of each chapter A fully integrated Web page provides data sets Numerous graphical displays highlight the significance of visual appeal Regression Analysis by Example, Fourth Edition is suitable for anyone with an understanding of elementary statistics. Methods of regression analysis are clearly demonstrated, and examples containing the types of irregularities commonly encountered in the real world are provided. Each example isolates one or two techniques and features detailed discussions of the techniques themselves, the required assumptions, and the evaluated success of each technique. The methods described throughout the book can be carried out with most of the currently available statistical software packages, such as the software package R. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.