*In Memory of A. L. S. Corner*

**Author**: Rüdiger Göbel

**Publisher:** Walter de Gruyter

**ISBN:**

**Category:** Mathematics

**Page:** 506

**View:** 815

This is a memorial volume dedicated to A. L. S. Corner, previously Professor in Oxford, who published important results on algebra, especially on the connections of modules with endomorphism algebras. The volume contains refereed contributions which are related to the work of Corner. It contains also an unpublished extended paper of Corner himself. A memorial volume with important contributions related to algebra.

This volume focuses on group theory and model theory with a particular emphasis on the interplay of the two areas. The survey papers provide an overview of the developments across group, module, and model theory while the research papers present the most recent study in those same areas. With introductory sections that make the topics easily accessible to students, the papers in this volume will appeal to beginning graduate students and experienced researchers alike. As a whole, this book offers a cross-section view of the areas in group, module, and model theory, covering topics such as DP-minimal groups, Abelian groups, countable 1-transitive trees, and module approximations. The papers in this book are the proceedings of the conference “New Pathways between Group Theory and Model Theory,” which took place February 1-4, 2016, in Mülheim an der Ruhr, Germany, in honor of the editors’ colleague Rüdiger Göbel. This publication is dedicated to Professor Göbel, who passed away in 2014. He was one of the leading experts in Abelian group theory.

This book contains the proceedings of the conference ``Groups and Model Theory'', held May 30-June 3, 2011, in Ruhr, Germany, in honor of Rudiger Gobel's 70th birthday. In the last thirty years, group theory has received new input through the application of methods from logic to problems in algebra. In particular, model theory has strongly influenced both commutative and non-commutative group theory. This led to striking new developments in group theory and has had an interesting impact back on model theory. This interplay has been revisited by algebraists and model theorists and is showing strong and promising roads for future research. This book presents important current research at the border of model theory and group theory by renowned researchers. Articles in this volume cover abelian groups, modules over commutative rings, permutation groups, automorphism groups of homogeneous structures such as graphs, relational structures, geometries, topological spaces or groups, consequences of model theoretic properties like stability or categoricity, subgroups of small index, the automorphism tower problem, as well as random constructions.

This book provides the first systematic treatment of modules over discrete valuation domains, which play an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text along with interesting open problems. This updated edition presents new approaches on p-adic integers and modules, and on the determinability of a module by its automorphism group. Contents Preliminaries Basic facts Endomorphism rings of divisible and complete modules Representation of rings by endomorphism rings Torsion-free modules Mixed modules Determinity of modules by their endomorphism rings Modules with many endomorphisms or automorphisms

In recent years the interplay between model theory and other branches of mathematics has led to many deep and intriguing results. In this, the first book on the topic, the theme is the interplay between model theory and the theory of modules. The book is intended to be a self-contained introduction to the subject and introduces the requisite model theory and module theory as it is needed. Dr Prest develops the basic ideas concerning what can be said about modules using the information which may be expressed in a first-order language. Later chapters discuss stability-theoretic aspects of modules, and structure and classification theorems over various types of rings and for certain classes of modules. Both algebraists and logicians will enjoy this account of an area in which algebra and model theory interact in a significant way. The book includes numerous examples and exercises and consequently will make an ideal introduction for graduate students coming to this subject for the first time.

This monograph – now in its second revised and extended edition – provides a thorough treatment of module theory, a subfield of algebra. The authors develop an approximation theory as well as realization theorems and present some of its recent applications, notably to infinite-dimensional combinatorics and model theory. The book starts from basic facts and gradually develops the theory towards its present frontiers.

This volume contains the proceedings of the international conference Model Theory of Modules, Algebras and Categories, held from July 28–August 2, 2017, at the Ettore Majorana Foundation and Centre for Scientific Culture in Erice, Italy. Papers contained in this volume cover recent developments in model theory, module theory and category theory, and their intersection.

Written by one of the subject’s foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of un decidability problems. The treatment of the latter trend includes Shelah’s seminal work on the un decidability in ZFC of Whitehead’s Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, the book reviews the fundamentals of abelian group theory and provides some background material from category theory, set theory, topology and homological algebra. An abundance of exercises are included to test the reader’s comprehension, and to explore noteworthy extensions and related sidelines of the main topics. A list of open problems and questions, in each chapter, invite the reader to take an active part in the subject’s further development.

Commutative algebra is a rapidly growing subject that is developing in many different directions. This volume presents several of the most recent results from various areas related to both Noetherian and non-Noetherian commutative algebra. This volume contains a collection of invited survey articles by some of the leading experts in the field. The authors of these chapters have been carefully selected for their important contributions to an area of commutative-algebraic research. Some topics presented in the volume include: generalizations of cyclic modules, zero divisor graphs, class semigroups, forcing algebras, syzygy bundles, tight closure, Gorenstein dimensions, tensor products of algebras over fields, as well as many others. This book is intended for researchers and graduate students interested in studying the many topics related to commutative algebra.