Model Theory of Algebra and Arithmetic

Proceedings of the Conference on Applications of Logic to Algebra and Arithmetic held at Karpacz,Poland, September 1-7, 1979

Author: L. Pacholski

Publisher: Springer

ISBN:

Category: Mathematics

Page: 412

View: 924

Model Theory, Algebra, and Geometry

Author: Professor of Mathematics Anand Pillay

Publisher: Cambridge University Press

ISBN:

Category: Mathematics

Page: 227

View: 316

Model theory has made substantial contributions to semialgebraic, subanalytic, p-adic, rigid and diophantine geometry. These applications range from a proof of the rationality of certain Poincare series associated to varieties over p-adic fields, to a proof of the Mordell-Lang conjecture for function fields in positive characteristic. In some cases (such as the latter) it is the most abstract aspects of model theory which are relevant. This book, originally published in 2000, arising from a series of introductory lectures for graduate students, provides the necessary background to understanding both the model theory and the mathematics behind these applications. The book is unique in that the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations) is covered and diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) are introduced and discussed, all by leading experts in their fields.

Mathematical Logic and Model Theory

A Brief Introduction

Author: Alexander Prestel

Publisher: Springer

ISBN:

Category: Mathematics

Page: 194

View: 379

Mathematical Logic and Model Theory: A Brief Introduction offers a streamlined yet easy-to-read introduction to mathematical logic and basic model theory. It presents, in a self-contained manner, the essential aspects of model theory needed to understand model theoretic algebra. As a profound application of model theory in algebra, the last part of this book develops a complete proof of Ax and Kochen's work on Artin's conjecture about Diophantine properties of p-adic number fields. The character of model theoretic constructions and results differ quite significantly from that commonly found in algebra, by the treatment of formulae as mathematical objects. It is therefore indispensable to first become familiar with the problems and methods of mathematical logic. Therefore, the text is divided into three parts: an introduction into mathematical logic (Chapter 1), model theory (Chapters 2 and 3), and the model theoretic treatment of several algebraic theories (Chapter 4). This book will be of interest to both advanced undergraduate and graduate students studying model theory and its applications to algebra. It may also be used for self-study.

Advances in Algebra and Model Theory

Author: M Droste

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 512

View: 627

Contains 25 surveys in algebra and model theory, all written by leading experts in the field. The surveys are based around talks given at conferences held in Essen, 1994, and Dresden, 1995. Each contribution is written in such a way as to highlight the ideas that were discussed at the conferences, and also to stimulate open research problems in a form accessible to the whole mathematical community. The topics include field and ring theory as well as groups, ordered algebraic structure and their relationship to model theory. Several papers deal with infinite permutation groups, abelian groups, modules and their relatives and representations. Model theoretic aspects include quantifier elimination in skew fields, Hilbert's 17th problem, (aleph-0)-categorical structures and Boolean algebras. Moreover symmetry questions and automorphism groups of orders are covered. This work contains 25 surveys in algebra and model theory, each is written in such a way as to highlight the ideas that were discussed at Conferences, and also to stimulate open research problems in a form accessible to the whole mathematical community.

Sets, Models and Proofs

Author: Ieke Moerdijk

Publisher: Springer

ISBN:

Category: Mathematics

Page: 141

View: 565

This textbook provides a concise and self-contained introduction to mathematical logic, with a focus on the fundamental topics in first-order logic and model theory. Including examples from several areas of mathematics (algebra, linear algebra and analysis), the book illustrates the relevance and usefulness of logic in the study of these subject areas. The authors start with an exposition of set theory and the axiom of choice as used in everyday mathematics. Proceeding at a gentle pace, they go on to present some of the first important results in model theory, followed by a careful exposition of Gentzen-style natural deduction and a detailed proof of Gödel’s completeness theorem for first-order logic. The book then explores the formal axiom system of Zermelo and Fraenkel before concluding with an extensive list of suggestions for further study. The present volume is primarily aimed at mathematics students who are already familiar with basic analysis, algebra and linear algebra. It contains numerous exercises of varying difficulty and can be used for self-study, though it is ideally suited as a text for a one-semester university course in the second or third year.

Model Theory

Author: Chen Chung Chang

Publisher: North-Holland

ISBN:

Category: Mathematics

Page: 554

View: 785

Since the second edition of this book (1977), Model Theory has changed radically, and is now concerned with fields such as classification (or stability) theory, nonstandard analysis, model-theoretic algebra, recursive model theory, abstract model theory, and model theories for a host of nonfirst order logics. Model theoretic methods have also had a major impact on set theory, recursion theory, and proof theory. This new edition has been updated to take account of these changes, while preserving its usefulness as a first textbook in model theory. Whole new sections have been added, as well as new exercises and references. A number of updates, improvements and corrections have been made to the main text.

Logic and Algebra

Author: Weimin Han

Publisher: American Mathematical Soc.

ISBN:

Category: Mathematics

Page: 285

View: 108

This volume outlines current developments in model theory and combinatorial set theory and presents state-of-the-art research. Well-known researchers report on their work in model theory and set theory with applications to algebra. The papers of J. Brendle and A. Blass present one of the most interesting areas of set theory. Brendle gives a very detailed and readable account of Shelah's solution for the long-standing problem of $\mathrm{Con}(\mathfrak{d}

Lectures on Algebraic Model Theory

Author: Bradd T. Hart

Publisher: Springer Science & Business

ISBN:

Category: Mathematics

Page: 111

View: 292

In recent years, model theory has had remarkable success in solving important problems as well as in shedding new light on our understanding of them. The three lectures collected here present recent developments in three such areas: Anand Pillay on differential fields, Patrick Speissegger on o-minimality and Matthias Clasen and Matthew Valeriote on tame congruence theory.

An Invitation to Model Theory

Author: Jonathan Kirby

Publisher: Cambridge University Press

ISBN:

Category: Mathematics

Page:

View: 587

Model theory begins with an audacious idea: to consider statements about mathematical structures as mathematical objects of study in their own right. While inherently important as a tool of mathematical logic, it also enjoys connections to and applications in diverse branches of mathematics, including algebra, number theory and analysis. Despite this, traditional introductions to model theory assume a graduate-level background of the reader. In this innovative textbook, Jonathan Kirby brings model theory to an undergraduate audience. The highlights of basic model theory are illustrated through examples from specific structures familiar from undergraduate mathematics, paying particular attention to definable sets throughout. With numerous exercises of varying difficulty, this is an accessible introduction to model theory and its place in mathematics.

A Functorial Model Theory

Newer Applications to Algebraic Topology, Descriptive Sets, and Computing Categories Topos

Author: Cyrus F. Nourani

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 302

View: 468

This book is an introduction to a functorial model theory based on infinitary language categories. The author introduces the properties and foundation of these categories before developing a model theory for functors starting with a countable fragment of an infinitary language. He also presents a new technique for generating generic models with categories by inventing infinite language categories and functorial model theory. In addition, the book covers string models, limit models, and functorial models.

Homotopy Theory and Models

Based on Lectures held at a DMV Seminar in Blaubeuren by H.J. Baues, S. Halperin and J.-M. Lemaire

Author: Marc Aubry

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 117

View: 884

In keeping with the general aim of the "D.M.V.-Seminar" series, this book is princi pally a report on a group of lectures held at Blaubeuren by Professors H. J. Baues, S. Halperin and J.-M. Lemaire, from October 30 to November 7, 1988. These lec tures were devoted to providing an introduction to the theory of models in algebraic homotopy. The three lecturers acted in concert to produce a coherent exposition of the theory. Commencing from a common starting point, each of them then proceeded naturally to his own subject of research. The reader who is already familiar with their scientific work will certainly give the lecturers their due. Having been asked by the speakers to take on the responsibility of writing down the notes, it seemed to me that the material elucidated in the short span of fifteen hours was too dense to appear, unedited, in book form. Some amplification was necessary. Of course I submitted to them the final version of this book, which received their approval. I thank them for this token of confidence. I am also grateful to all three for their help and advice in writing this book. I am particularly indebted to J.-M. Lemaire who was indeed very often consulted. For basic notions (in particular those concerning homotopy groups, CW complexes, (co)homology and homological algebra) the reader is advised to refer to the fundamental books written by E. H. Spanier [47], R. M. Switzer [49] and G. Whitehead [52].

Model Theory

Author: Wilfrid Hodges

Publisher: Cambridge University Press

ISBN:

Category: Mathematics

Page: 772

View: 643

Model theory is concerned with the notions of definition, interpretation and structure in a very general setting, and is applied to a wide range of other areas such as set theory, geometry, algebra and computer science. This book provides an integrated introduction to model theory for graduate students.

Model Theory : An Introduction

Author: David Marker

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 345

View: 478

Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures

Linear Model Theory

With Examples and Exercises

Author: Dale L. Zimmerman

Publisher: Springer Nature

ISBN:

Category: Mathematics

Page: 504

View: 401

This textbook presents a unified and rigorous approach to best linear unbiased estimation and prediction of parameters and random quantities in linear models, as well as other theory upon which much of the statistical methodology associated with linear models is based. The single most unique feature of the book is that each major concept or result is illustrated with one or more concrete examples or special cases. Commonly used methodologies based on the theory are presented in methodological interludes scattered throughout the book, along with a wealth of exercises that will benefit students and instructors alike. Generalized inverses are used throughout, so that the model matrix and various other matrices are not required to have full rank. Considerably more emphasis is given to estimability, partitioned analyses of variance, constrained least squares, effects of model misspecification, and most especially prediction than in many other textbooks on linear models. This book is intended for master and PhD students with a basic grasp of statistical theory, matrix algebra and applied regression analysis, and for instructors of linear models courses. Solutions to the book’s exercises are available in the companion volume Linear Model Theory - Exercises and Solutions by the same author.

Model Theoretic Algebra

Selected Topics

Author: G. Cherlin

Publisher: Springer

ISBN:

Category: Mathematics

Page: 238

View: 245

Building Models by Games

Author: Wilfrid Hodges

Publisher: Courier Corporation

ISBN:

Category: Mathematics

Page: 318

View: 319

This volume introduces a general method for building infinite mathematical structures and surveys applications in algebra and model theory. It covers basic model theory and examines a variety of algebraic applications, including completeness for Magidor-Malitz quantifiers, Shelah's recent and sophisticated omitting types theorem for L(Q), and applications to Boolean algebras. Over 160 exercises. 1985 edition.

Model Theoretic Algebra With Particular Emphasis on Fields, Rings, Modules

Author: Christian. U Jensen

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 464

View: 604

Looks like a text (and a handsome one at that), but the authors prefer to describe their creation as "notes", intended to acquaint graduate students with "the power of the most basic principles of model theory by applying them to classical questions in algebra". Thirteen chapters (the last given to the enumeration of some open problems), plus tables and several appendices, bibliography. (NW) Annotation copyrighted by Book News, Inc., Portland, OR