**Author**: Roger A. Horn

**Publisher:** Cambridge University Press

**ISBN:**

**Category:** Mathematics

**Page:** 561

**View:** 955

Linear algebra and matrix theory have long been fundamental tools in mathematical disciplines as well as fertile fields for research. In this book the authors present classical and recent results of matrix analysis that have proved to be important to applied mathematics. Facts about matrices, beyond those found in an elementary linear algebra course, are needed to understand virtually any area of mathematical science, but the necessary material has appeared only sporadically in the literature and in university curricula. As interest in applied mathematics has grown, the need for a text and reference offering a broad selection of topics in matrix theory has become apparent, and this book meets that need. This volume reflects two concurrent views of matrix analysis. First, it encompasses topics in linear algebra that have arisen out of the needs of mathematical analysis. Second, it is an approach to real and complex linear algebraic problems that does not hesitate to use notions from analysis. Both views are reflected in its choice and treatment of topics.

This book treats several topics in matrix theory not included in its predecessor volume, Matrix Analysis.

This book presents a substantial part of matrix analysis that is functional analytic in spirit. Topics covered include the theory of majorization, variational principles for eigenvalues, operator monotone and convex functions, and perturbation of matrix functions and matrix inequalities. The book offers several powerful methods and techniques of wide applicability, and it discusses connections with other areas of mathematics.

The thoroughly revised and updated second edition of this acclaimed text has several new and expanded sections and more than 1,100 exercises.

Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.

Lucid and concise, this volume covers all the key aspects of matrix analysis and presents a variety of fundamental methods.

This new book offers a fresh approach to matrix and linear algebra by providing a balanced blend of applications, theory, and computation, while highlighting their interdependence. Intended for a one-semester course, Applied Linear Algebra and Matrix Analysis places special emphasis on linear algebra as an experimental science, with numerous examples, computer exercises, and projects. While the flavor is heavily computational and experimental, the text is independent of specific hardware or software platforms. Throughout the book, significant motivating examples are woven into the text, and each section ends with a set of exercises.

Uses state-of-the-art computer technology to formulate displacement method with matrix algebra. Facilitates analysis of structural dynamics and applications to earthquake engineering and UBC and IBC seismic building codes.

Matrix Analysis and Applied Linear Algebra is an honest math text that circumvents the traditional definition-theorem-proof format that has bored students in the past. Meyer uses a fresh approach to introduce a variety of problems and examples ranging from the elementary to the challenging and from simple applications to discovery problems. The focus on applications is a big difference between this book and others. Meyer's book is more rigorous and goes into more depth than some. He includes some of the more contemporary topics of applied linear algebra which are not normally found in undergraduate textbooks. Modern concepts and notation are used to introduce the various aspects of linear equations, leading readers easily to numerical computations and applications. The theoretical developments are always accompanied with examples, which are worked out in detail. Each section ends with a large number of carefully chosen exercises from which the students can gain further insight.

Matrix Analysis for Scientists and Engineers provides a blend of undergraduate- and graduate-level topics in matrix theory and linear algebra that relieves instructors of the burden of reviewing such material in subsequent courses that depend heavily on the language of matrices. Consequently, the text provides an often-needed bridge between undergraduate-level matrix theory and linear algebra and the level of matrix analysis required for graduate-level study and research. The text is sufficiently compact that the material can be taught comfortably in a one-quarter or one-semester course. Throughout the book, the author emphasizes the concept of matrix factorization to provide a foundation for a later course in numerical linear algebra. The author addresses connections to differential and difference equations as well as to linear system theory and encourages instructors to augment these examples with other applications of their own choosing.