*An Elementary Approach to Ideas and Methods*

**Author**: Richard Courant

**Publisher:** Oxford University Press, USA

**ISBN:**

**Category:** Mathematics

**Page:** 566

**View:** 421

A discussion of fundamental mathematical principles from algebra to elementary calculus designed to promote constructive mathematical reasoning.

Reflecting an insider's view of mathematical life, the author argues that mathematics must be historically evolved, and intelligible only in a social context.

Mathematics is a subject we are all exposed to in our daily lives, but one that many of us fear. Timothy Gowers’s entertaining overview of the topic explains the differences between what we learn at school and advanced mathematics, and helps the math phobic emerge with a clearer understanding of such paradoxical-sounding concepts as “infinity,” “curved space,” and “imaginary numbers.” From basic ideas to philosophical queries to common sociological questions about the mathematical community, this book unravels the mysteries of space and numbers.

Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Third Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations, the use of Euler’s formula to study the five Platonic solids, the use of prime numbers to encode and decode secret information, and the theory of how to compare the sizes of two infinite sets. New to the Third Edition The third edition of this popular text contains three new chapters that provide an introduction to mathematical analysis. These new chapters introduce the ideas of limits of sequences and continuous functions as well as several interesting applications, such as the use of the intermediate value theorem to prove the existence of nth roots. This edition also includes solutions to all of the odd-numbered exercises. By carefully explaining various topics in analysis, geometry, number theory, and combinatorics, this textbook illustrates the power and beauty of basic mathematical concepts. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher level mathematics, enabling students to study further courses in abstract algebra and analysis.

This book aims to explain, in clear non-technical language,what it is that mathematicians do, and how that differs from and builds on the mathematics that most people are familiar with from school. It is the ideal introduction for anyone who wishes to deepen their understanding of mathematics.

From a review of the second edition: "This book covers many interesting topics not usually covered in a present day undergraduate course, as well as certain basic topics such as the development of the calculus and the solution of polynomial equations. The fact that the topics are introduced in their historical contexts will enable students to better appreciate and understand the mathematical ideas involved...If one constructs a list of topics central to a history course, then they would closely resemble those chosen here." (David Parrott, Australian Mathematical Society) This book offers a collection of historical essays detailing a large variety of mathematical disciplines and issues; it’s accessible to a broad audience. This third edition includes new chapters on simple groups and new sections on alternating groups and the Poincare conjecture. Many more exercises have been added as well as commentary that helps place the exercises in context.

99 puzzles built around the chessboard. Arithmetical and probability problems, chessboard recreations, geometrical puzzles, mathematical amusements and games, more. Solutions.

This book contains a selection of more than 500 mathematical problems and their solutions from the PhD qualifying examination papers of more than ten famous American universities. The problems cover six aspects of graduate school mathematics: Algebra, Differential Geometry, Topology, Real Analysis, Complex Analysis and Partial Differential Equations. The depth of knowledge involved is not beyond the contents of the textbooks for graduate students, while solution of the problems requires deep understanding of the mathematical principles and skilled techniques. For students this book is a valuable complement to textbooks; for lecturers teaching graduate school mathematics, a helpful reference. Copyright © Libri GmbH. All rights reserved.

Refuting the accepted belief that mathematics is exact and infallible, the author examines the development of conflicting concepts of mathematics and their implications for the physical, applied, social, and computer sciences