**Author**: John Stillwell

**Publisher:** Springer Science & Business Media

**ISBN:**

**Category:** Mathematics

**Page:** 544

**View:** 341

This book offers a collection of historical essays detailing a large variety of mathematical disciplines and issues; it’s accessible to a broad audience. This second edition includes new chapters on Chinese and Indian number theory, on hypercomplex numbers, and on algebraic number theory. Many more exercises have been added as well as commentary that helps place the exercises in context.

From a review of the second edition: "This book covers many interesting topics not usually covered in a present day undergraduate course, as well as certain basic topics such as the development of the calculus and the solution of polynomial equations. The fact that the topics are introduced in their historical contexts will enable students to better appreciate and understand the mathematical ideas involved...If one constructs a list of topics central to a history course, then they would closely resemble those chosen here." (David Parrott, Australian Mathematical Society) This book offers a collection of historical essays detailing a large variety of mathematical disciplines and issues; it’s accessible to a broad audience. This third edition includes new chapters on simple groups and new sections on alternating groups and the Poincare conjecture. Many more exercises have been added as well as commentary that helps place the exercises in context.

This textbook provides a unified and concise exploration of undergraduate mathematics by approaching the subject through its history. Readers will discover the rich tapestry of ideas behind familiar topics from the undergraduate curriculum, such as calculus, algebra, topology, and more. Featuring historical episodes ranging from the Ancient Greeks to Fermat and Descartes, this volume offers a glimpse into the broader context in which these ideas developed, revealing unexpected connections that make this ideal for a senior capstone course. The presentation of previous versions has been refined by omitting the less mainstream topics and inserting new connecting material, allowing instructors to cover the book in a one-semester course. This condensed edition prioritizes succinctness and cohesiveness, and there is a greater emphasis on visual clarity, featuring full color images and high quality 3D models. As in previous editions, a wide array of mathematical topics are covered, from geometry to computation; however, biographical sketches have been omitted. Mathematics and Its History: A Concise Edition is an essential resource for courses or reading programs on the history of mathematics. Knowledge of basic calculus, algebra, geometry, topology, and set theory is assumed. From reviews of previous editions: “Mathematics and Its History is a joy to read. The writing is clear, concise and inviting. The style is very different from a traditional text. I found myself picking it up to read at the expense of my usual late evening thriller or detective novel.... The author has done a wonderful job of tying together the dominant themes of undergraduate mathematics.” Richard J. Wilders, MAA, on the Third Edition "The book...is presented in a lively style without unnecessary detail. It is very stimulating and will be appreciated not only by students. Much attention is paid to problems and to the development of mathematics before the end of the nineteenth century.... This book brings to the non-specialist interested in mathematics many interesting results. It can be recommended for seminars and will be enjoyed by the broad mathematical community." European Mathematical Society, on the Second Edition

Mathematical Perspectives: Essays on Mathematics and its Historical Development is a collection of 13 biographical essays on the historical advances of science. This collection is originally meant to comprise an issue of the journal Historia Mathematica in honor of Professor Kurt R. Biermann’s 60th birthday. This 12-chapter text includes essays on studies and commentaries on the problem of “figures of equal perimeter by various authors in antiquity, including Zenodorus, Theon, and Pappus. Other essays explore the comparison of the areas of polygons with equal perimeter; the concept of function; history of mathematics; the development of mathematical physics in France; and the history of Logicism and Formalism. The remaining chapters deal with essays on an early version of Gauss’ Disquisitiones Arithmeticae, ideal numbers, a mathematical-philosophilica theory of probability, and historical examples of problem of number sequence interpolation. This book will be of value to mathematicians, historians, and researchers.

Unusually clear, accessible introduction covers counting, properties of numbers, prime numbers, Aliquot parts, Diophantine problems, congruences, much more. Bibliography.

As an historiographic monograph, this book offers a detailed survey of the professional evolution and significance of an entire discipline devoted to the history of science. It provides both an intellectual and a social history of the development of the subject from the first such effort written by the ancient Greek author Eudemus in the Fourth Century BC, to the founding of the international journal, Historia Mathematica, by Kenneth O. May in the early 1970s.

Praise for the Second Edition "An amazing assemblage of worldwide contributions in mathematics and, in addition to use as a course book, a valuable resource . . . essential." —CHOICE This Third Edition of The History of Mathematics examines the elementary arithmetic, geometry, and algebra of numerous cultures, tracing their usage from Mesopotamia, Egypt, Greece, India, China, and Japan all the way to Europe during the Medieval and Renaissance periods where calculus was developed. Aimed primarily at undergraduate students studying the history of mathematics for science, engineering, and secondary education, the book focuses on three main ideas: the facts of who, what, when, and where major advances in mathematics took place; the type of mathematics involved at the time; and the integration of this information into a coherent picture of the development of mathematics. In addition, the book features carefully designed problems that guide readers to a fuller understanding of the relevant mathematics and its social and historical context. Chapter-end exercises, numerous photographs, and a listing of related websites are also included for readers who wish to pursue a specialized topic in more depth. Additional features of The History of Mathematics, Third Edition include: Material arranged in a chronological and cultural context Specific parts of the history of mathematics presented as individual lessons New and revised exercises ranging between technical, factual, and integrative Individual PowerPoint presentations for each chapter and a bank of homework and test questions (in addition to the exercises in the book) An emphasis on geography, culture, and mathematics In addition to being an ideal coursebook for undergraduate students, the book also serves as a fascinating reference for mathematically inclined individuals who are interested in learning about the history of mathematics.

This compact, well-written history covers major mathematical ideas and techniques from the ancient Near East to 20th-century computer theory, surveying the works of Archimedes, Pascal, Gauss, Hilbert, and many others. "The author's ability as a first-class historian as well as an able mathematician has enabled him to produce a work which is unquestionably one of the best." — Nature.

In this Very Short Introduction, Jacqueline Stedall explores the rich historical and cultural diversity of mathematical endeavour from the distant past to the present day, using illustrative case studies drawn from a range of times and places; including early imperial China, the medieval Islamic world, and nineteenth-century Britain.

Originally issued in 1893, this popular Fifth Edition (1991) covers the period from antiquity to the close of World War I, with major emphasis on advanced mathematics and, in particular, the advanced mathematics of the nineteenth and early twentieth centuries. In one concise volume, this unique book presents an interesting and reliable account of mathematics history for those who cannot devote themselves to an intensive study. The book is a must for personal and departmental libraries alike. Cajori has mastered the art of incorporating an enormous amount of specific detail into a smooth-flowing narrative. The Index - for example - contains not just the 300 to 400 names one would expect to find, but over 1,600. And, for example, one will not only find John Pell, but will learn who he was and some specifics of what he did (and that the Pell equation was named erroneously after him).In addition, one will come across Anna J. Pell and learn of her work on biorthogonal systems; one will find not only H. Lebesgue but the not unimportant (even if not major) V.A. Lebesgue. Of the Bernoullis one will find not three or four but all eight. One will find R. Sturm as well as C. Sturm; M. Ricci as well as G. Ricci; V. Riccati as well as J.F. Riccati; Wolfgang Bolyai as well as J. Bolyai; the mathematician Martin Ohm as well as the physicist G.S. Ohm; M. Riesz as well as F. Riesz; H.G. Grassmann as well as H. Grassmann; H.P. Babbage who continued the work of his father C. Babbage; R. Fuchs as well as the more famous L. Fuchs; A. Quetelet as well as L.A.J. Quetelet; P.M. Hahn and Hans Hahn; E. Blaschke and W. Blaschke; J. Picard as well as the more famous C.E. Picard; B. Pascal (of course) and also Ernesto Pascal and Etienne Pascal; and, the historically important V.J. Bouniakovski and W.A. Steklov, seldom mentioned at the time outside the Soviet literature.

Mathematics is one of the most basic -- and most ancient -- types of knowledge. Yet the details of its historical development remain obscure to all but a few specialists. The two-volume Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences recovers this mathematical heritage, bringing together many of the world's leading historians of mathematics to examine the history and philosophy of the mathematical sciences in a cultural context, tracing their evolution from ancient times to the twentieth century. In 176 concise articles divided into twelve parts, contributors describe and analyze the variety of problems, theories, proofs, and techniques in all areas of pure and applied mathematics, including probability and statistics. This indispensable reference work demonstrates the continuing importance of mathematics and its use in physics, astronomy, engineering, computer science, philosophy, and the social sciences. Also addressed is the history of higher education in mathematics. Carefully illustrated, with annotated bibliographies of sources for each article, The Companion Encyclopedia is a valuable research tool for students and teachers in all branches of mathematics. Contents of Volume 1: Â•Ancient and Non-Western Traditions Â•The Western Middle Ages and the Renaissance Â•Calculus and Mathematical Analysis Â•Functions, Series, and Methods in Analysis Â•Logic, Set Theories, and the Foundations of Mathematics Â•Algebras and Number Theory Contents of Volume 2: Â•Geometries and Topology Â•Mechanics and Mechanical Engineering Â•Physics, Mathematical Physics, and Electrical Engineering Â•Probability, Statistics, and the Social Sciences Â•Higher Education and Institutions Â•Mathematics and Culture Â•Select Bibliography, Chronology, Biographical Notes, and Index

" [These lectures] are about themes of the history of mathematics which for various reasons are dear to me. The early differential and integral calculus, Christiaan Huygens, and the concept of construction in seventeenth- and eighteenth-century mathematics are the three themes around which much of my research has concentrated and which continue to fascinate me by the insights they offer in the development of that special human activity called mathematics." ---from the Introduction. This volume contains 11 lectures ranging over a variety of topics in the history of mathematics. The lectures, presented between 1970 and 1987, were delivered in a variety of venues and appeared only in less accessible publications. Those who teach mathematics, as well as mathematics historians, will appreciate this insightful, wide ranging book. The History of Mathematics series is cojointly published with the London Mathematical Society

This standard text treats hundreds of figures and schools instrumental in the development of mathematics, from the Phoenicians to such 19th-century giants as Grassman, Galois, and Riemann.

This book offers insights into the history of mathematics education, covering both the current state of the art of research and the methodology of the field. History of mathematics education is treated in the book as a part of social history. This book grew out of the presentations delivered at the International Congress on Mathematics Education in Hamburg. Modern development and growing internationalization of mathematics education made it clear that many urgent questions benefit from a historical approach. The chapters present viewpoints from the following countries: Belgium, Brazil, Cambodia, China, Cyprus, Germany, Iceland, Italy, the Netherlands, Russia,Spain and Sweden. Each chapter represents significant directions of historical studies. The book is a valuable source for every historian of mathematics education and those interested in mathematics education and its development.

This Element aims to present an outline of mathematics and its history, with particular emphasis on events that shook up its philosophy. It ranges from the discovery of irrational numbers in ancient Greece to the nineteenth- and twentieth-century discoveries on the nature of infinity and proof. Recurring themes are intuition and logic, meaning and existence, and the discrete and the continuous. These themes have evolved under the influence of new mathematical discoveries and the story of their evolution is, to a large extent, the story of philosophy of mathematics.

In August of 1986, a special conference on recreational mathematics was held at the University of Calgary to celebrate the founding of the Strens Collection. Leading practitioners of recreational mathematics from around the world gathered in Calgary to share with each other the joy and spirit of play that is to be found in recreational mathematics. It would be difficult to find a better collection of wonderful articles on recreational mathematics by a more distinguished group of authors. If you are interested in tessellations, Escher, tilings, Rubik's cube, pentominoes, games, puzzles, the arbelos, Henry Dudeney, or change ringing, then this book is for you.

This book explores some of the major turning points in the history of mathematics, ranging from ancient Greece to the present, demonstrating the drama that has often been a part of its evolution. Studying these breakthroughs, transitions, and revolutions, their stumbling-blocks and their triumphs, can help illuminate the importance of the history of mathematics for its teaching, learning, and appreciation. Some of the turning points considered are the rise of the axiomatic method (most famously in Euclid), and the subsequent major changes in it (for example, by David Hilbert); the “wedding,” via analytic geometry, of algebra and geometry; the “taming” of the infinitely small and the infinitely large; the passages from algebra to algebras, from geometry to geometries, and from arithmetic to arithmetics; and the revolutions in the late nineteenth and early twentieth centuries that resulted from Georg Cantor’s creation of transfinite set theory. The origin of each turning point is discussed, along with the mathematicians involved and some of the mathematics that resulted. Problems and projects are included in each chapter to extend and increase understanding of the material. Substantial reference lists are also provided. Turning Points in the History of Mathematics will be a valuable resource for teachers of, and students in, courses in mathematics or its history. The book should also be of interest to anyone with a background in mathematics who wishes to learn more about the important moments in its development.

In this textbook the authors present first-year geometry roughly in the order in which it was discovered. The first five chapters show how the ancient Greeks established geometry, together with its numerous practical applications, while more recent findings on Euclidian geometry are discussed as well. The following three chapters explain the revolution in geometry due to the progress made in the field of algebra by Descartes, Euler and Gauss. Spatial geometry, vector algebra and matrices are treated in chapters 9 and 10. The last chapter offers an introduction to projective geometry, which emerged in the 19thcentury. Complemented by numerous examples, exercises, figures and pictures, the book offers both motivation and insightful explanations, and provides stimulating and enjoyable reading for students and teachers alike.