Low-Power Digital VLSI Design

Circuits and Systems

Author: Abdellatif Bellaouar

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 530

View: 226

Low-Power Digital VLSI Design: Circuits and Systems addresses both process technologies and device modeling. Power dissipation in CMOS circuits, several practical circuit examples, and low-power techniques are discussed. Low-voltage issues for digital CMOS and BiCMOS circuits are emphasized. The book also provides an extensive study of advanced CMOS subsystem design. A low-power design methodology is presented with various power minimization techniques at the circuit, logic, architecture and algorithm levels. Features: Low-voltage CMOS device modeling, technology files, design rules Switching activity concept, low-power guidelines to engineering practice Pass-transistor logic families Power dissipation of I/O circuits Multi- and low-VT CMOS logic, static power reduction circuit techniques State of the art design of low-voltage BiCMOS and CMOS circuits Low-power techniques in CMOS SRAMS and DRAMS Low-power on-chip voltage down converter design Numerous advanced CMOS subsystems (e.g. adders, multipliers, data path, memories, regular structures, phase-locked loops) with several design options trading power, delay and area Low-power design methodology, power estimation techniques Power reduction techniques at the logic, architecture and algorithm levels More than 190 circuits explained at the transistor level.

Practical Low Power Digital VLSI Design

Author: Gary K. Yeap

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 212

View: 227

Practical Low Power Digital VLSI Design emphasizes the optimization and trade-off techniques that involve power dissipation, in the hope that the readers are better prepared the next time they are presented with a low power design problem. The book highlights the basic principles, methodologies and techniques that are common to most CMOS digital designs. The advantages and disadvantages of a particular low power technique are discussed. Besides the classical area-performance trade-off, the impact to design cycle time, complexity, risk, testability and reusability are discussed. The wide impacts to all aspects of design are what make low power problems challenging and interesting. Heavy emphasis is given to top-down structured design style, with occasional coverage in the semicustom design methodology. The examples and design techniques cited have been known to be applied to production scale designs or laboratory settings. The goal of Practical Low Power Digital VLSI Design is to permit the readers to practice the low power techniques using current generation design style and process technology. Practical Low Power Digital VLSI Design considers a wide range of design abstraction levels spanning circuit, logic, architecture and system. Substantial basic knowledge is provided for qualitative and quantitative analysis at the different design abstraction levels. Low power techniques are presented at the circuit, logic, architecture and system levels. Special techniques that are specific to some key areas of digital chip design are discussed as well as some of the low power techniques that are just appearing on the horizon. Practical Low Power Digital VLSI Design will be of benefit to VLSI design engineers and students who have a fundamental knowledge of CMOS digital design.

Low Power VLSI Design

Fundamentals

Author: Angsuman Sarkar

Publisher: Walter de Gruyter GmbH & Co KG

ISBN:

Category: Technology & Engineering

Page: 324

View: 624

This book teaches basic and advanced concepts, new methodologies and recent developments in VLSI technology with a focus on low power design. It provides insight on how to use Tanner Spice, Cadence tools, Xilinx tools, VHDL programming and Synopsis to design simple and complex circuits using latest state-of-the art technologies. Emphasis is placed on fundamental transistor circuit-level design concepts.

Low Power Design Essentials

Author: Jan Rabaey

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 366

View: 271

This book contains all the topics of importance to the low power designer. It first lays the foundation and then goes on to detail the design process. The book also discusses such special topics as power management and modal design, ultra low power, and low power design methodology and flows. In addition, coverage includes projections of the future and case studies.

Low Power Design in Deep Submicron Electronics

Author: W. Nebel

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 580

View: 764

Low Power Design in Deep Submicron Electronics deals with the different aspects of low power design for deep submicron electronics at all levels of abstraction from system level to circuit level and technology. Its objective is to guide industrial and academic engineers and researchers in the selection of methods, technologies and tools and to provide a baseline for further developments. Furthermore the book has been written to serve as a textbook for postgraduate student courses. In order to achieve both goals, it is structured into different chapters each of which addresses a different phase of the design, a particular level of abstraction, a unique design style or technology. These design-related chapters are amended by motivations in Chapter 2, which presents visions both of future low power applications and technology advancements, and by some advanced case studies in Chapter 9. From the Foreword: `... This global nature of design for low power was well understood by Wolfgang Nebel and Jean Mermet when organizing the NATO workshop which is the origin of the book. They invited the best experts in the field to cover all aspects of low power design. As a result the chapters in this book are covering deep-submicron CMOS digital system design for low power in a systematic way from process technology all the way up to software design and embedded software systems. Low Power Design in Deep Submicron Electronics is an excellent guide for the practicing engineer, the researcher and the student interested in this crucial aspect of actual CMOS design. It contains about a thousand references to all aspects of the recent five years of feverish activity in this exciting aspect of design.' Hugo de Man Professor, K.U. Leuven, Belgium Senior Research Fellow, IMEC, Belgium

Designing CMOS Circuits for Low Power

Author: Dimitrios Soudris

Publisher: Taylor & Francis US

ISBN:

Category: Computers

Page: 277

View: 238

Designing CMOS Circuits for Low Power provides the fundamentals of low power design for logic, circuit, and physical design level as well as the "design story" of two innovative low power systems developed in the context of European Low Power Initiative for Electronic System Design. The main objective is to present in-depth analytical and design capabilities for low power design CMOS circuits. Determining the sources of power dissipation, in-depth description of the main existing low power optimization and estimation techniques, and, their corresponding advantages, drawbacks and comparisons are discussed. Part I starts with the description of the main principles of dynamic, short-circuit, static, and leakage power dissipation together with the low power strategies for reducing each power component. A typical low power design flow consists of power optimization and estimation techniques, which should be applied in each design level. Starting with the formulation of logic optimization problem, technology independent and technology-dependent power optimization steps for combinational and sequential logic circuits are presented. The power characteristics of different logic styles such as dynamic logic and pass transistor logic and alternative implementations of basic digital circuits are studied and compared in terms of performance, area and power dissipation. Efficient implementations and comparisons of adder and multiplier circuits for various topologies are addressed. Furthermore, novel techniques that reduce the power based on alternative arithmetic schemes are investigated. Then, we tackle with the power reduction techniques for SRAM and DRAM memories. In the physical design level, the power optimization issues of clock distribution, interconnect, and layout design are described. The first part ends up with the advantages and drawbacks of the simulation-based and probabilistic power estimation methods of a logic circuit. The second part gives the architecture and the design techniques used for the low power implementation of a Safety-Critical Application Specific Instruction Processor and ultrasound beamformer application specific integrated circuit. Designing CMOS Circuits for Low Power can be used as a textbook for undergraduate and graduate students, and, VLSI design engineers and professionals from academia and industry, who have had a basic knowledge of Microelectronics and CMOS digital design.

Digital Integrated Circuit Design

From VLSI Architectures to CMOS Fabrication

Author: Hubert Kaeslin

Publisher: Cambridge University Press

ISBN:

Category: Technology & Engineering

Page: 845

View: 980

Top-down approach to practical, tool-independent, digital circuit design, reflecting how circuits are designed.

Low Power Design Methodologies

Author: Jan M. Rabaey

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 367

View: 924

Low Power Design Methodologies presents the first in-depth coverage of all the layers of the design hierarchy, ranging from the technology, circuit, logic and architectural levels, up to the system layer. The book gives insight into the mechanisms of power dissipation in digital circuits and presents state of the art approaches to power reduction. Finally, it introduces a global view of low power design methodologies and how these are being captured in the latest design automation environments. The individual chapters are written by the leading researchers in the area, drawn from both industry and academia. Extensive references are included at the end of each chapter. Audience: A broad introduction for anyone interested in low power design. Can also be used as a text book for an advanced graduate class. A starting point for any aspiring researcher.

Logic Synthesis for Low Power VLSI Designs

Author: Sasan Iman

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 236

View: 344

Logic Synthesis for Low Power VLSI Designs presents a systematic and comprehensive treatment of power modeling and optimization at the logic level. More precisely, this book provides a detailed presentation of methodologies, algorithms and CAD tools for power modeling, estimation and analysis, synthesis and optimization at the logic level. Logic Synthesis for Low Power VLSI Designs contains detailed descriptions of technology-dependent logic transformations and optimizations, technology decomposition and mapping, and post-mapping structural optimization techniques for low power. It also emphasizes the trade-off techniques for two-level and multi-level logic circuits that involve power dissipation and circuit speed, in the hope that the readers can better understand the issues and ways of achieving their power dissipation goal while meeting the timing constraints. Logic Synthesis for Low Power VLSI Designs is written for VLSI design engineers, CAD professionals, and students who have had a basic knowledge of CMOS digital design and logic synthesis.

Digital Vlsi Design

Author: Singh Ajay Kumar

Publisher: PHI Learning Pvt. Ltd.

ISBN:

Category: Integrated circuits

Page: 368

View: 880

Low-Power VLSI Circuits and Systems

Author: Ajit Pal

Publisher: Springer

ISBN:

Category: Technology & Engineering

Page: 389

View: 821

The book provides a comprehensive coverage of different aspects of low power circuit synthesis at various levels of design hierarchy; starting from the layout level to the system level. For a seamless understanding of the subject, basics of MOS circuits has been introduced at transistor, gate and circuit level; followed by various low-power design methodologies, such as supply voltage scaling, switched capacitance minimization techniques and leakage power minimization approaches. The content of this book will prove useful to students, researchers, as well as practicing engineers.

Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation

15th International Workshop, PATMOS 2005, Leuven, Belgium, September 21-23, 2005, Proceedings

Author: Vassilis Paliouras

Publisher: Springer

ISBN:

Category: Computers

Page: 756

View: 489

Welcome to the proceedings of PATMOS 2005, the 15th in a series of international workshops.PATMOS2005wasorganizedbyIMECwithtechnicalco-sponsorshipfrom the IEEE Circuits and Systems Society. Over the years, PATMOS has evolved into an important European event, where - searchers from both industry and academia discuss and investigate the emerging ch- lenges in future and contemporary applications, design methodologies, and tools - quired for the developmentof upcominggenerationsof integrated circuits and systems. The technical program of PATMOS 2005 contained state-of-the-art technical contri- tions, three invited talks, a special session on hearing-aid design, and an embedded - torial. The technical program focused on timing, performance and power consumption, as well as architectural aspects with particular emphasis on modeling, design, char- terization, analysis and optimization in the nanometer era. The Technical Program Committee, with the assistance of additional expert revi- ers, selected the 74 papers to be presented at PATMOS. The papers were divided into 11 technical sessions and 3 poster sessions. As is always the case with the PATMOS workshops, the review process was anonymous, full papers were required, and several reviews were carried out per paper. Beyond the presentations of the papers, the PATMOS technical program was - riched by a series of speeches offered by world class experts, on important emerging research issues of industrial relevance. Prof. Jan Rabaey, Berkeley, USA, gave a talk on “Traveling the Wild Frontier of Ulta Low-Power Design”, Dr. Sung Bae Park, S- sung, gave a presentation on “DVL (Deep Low Voltage): Circuits and Devices”, Prof.

Logic Synthesis for Low Power VLSI Designs

Author: Sasan Iman

Publisher: Springer Science & Business Media

ISBN:

Category: Computers

Page: 236

View: 258

Logic Synthesis for Low Power VLSI Designs presents a systematic and comprehensive treatment of power modeling and optimization at the logic level. More precisely, this book provides a detailed presentation of methodologies, algorithms and CAD tools for power modeling, estimation and analysis, synthesis and optimization at the logic level. Logic Synthesis for Low Power VLSI Designs contains detailed descriptions of technology-dependent logic transformations and optimizations, technology decomposition and mapping, and post-mapping structural optimization techniques for low power. It also emphasizes the trade-off techniques for two-level and multi-level logic circuits that involve power dissipation and circuit speed, in the hope that the readers can better understand the issues and ways of achieving their power dissipation goal while meeting the timing constraints. Logic Synthesis for Low Power VLSI Designs is written for VLSI design engineers, CAD professionals, and students who have had a basic knowledge of CMOS digital design and logic synthesis.

Advanced Low-Power Digital Circuit Techniques

Author: Muhammad S. Elrabaa

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 197

View: 680

Advanced Low-Power Digital Circuit Techniques presents several novel high performance digital circuit designs that emphasize low-power and low-voltage operation. These circuits represent a wide range of circuits that are used in state-of-the-art VLSI systems and hence serve as good examples for low-power design. Each chapter contains a brief introduction that serves as a quick background and gives the motivation behind the design. Each chapter also ends with a summary that briefly explains the contributions contained therein. This makes the book very readable. The reader can skim through the chapters very quickly to get a feel for the design problems presented in the book and the solutions proposed by the authors. Examples of circuits used in systems where low-power is important from reliability and portability points of view (such as general-purpose and DSP processors) are presented in Chapters 2, 3 and 4. Chapters 5 and 7 give examples of circuits used in systems where reliability and more system integration are the main driving forces behind lowering the power consumption. Chapter 6 gives an example of a general purpose high-performance low-power circuit design. Advanced Low-Power Digital Circuit Techniques is a real designer's book. It investigates alternative circuit styles, as well as architectural alternatives, and gives quantitative results for comparison in realistic technologies. Several of the circuits presented have been fabricated so that simulations can be checked. The circuits covered are the most important building blocks for many designs, so the text will be of direct use to designers. MOS designs are covered, as well as BiCMOS, and there are several novel circuits.

Low Power Digital CMOS Design

Author: Anantha P. Chandrakasan

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 409

View: 887

Power consumption has become a major design consideration for battery-operated, portable systems as well as high-performance, desktop systems. Strict limitations on power dissipation must be met by the designer while still meeting ever higher computational requirements. A comprehensive approach is thus required at all levels of system design, ranging from algorithms and architectures to the logic styles and the underlying technology. Potentially one of the most important techniques involves combining architecture optimization with voltage scaling, allowing a trade-off between silicon area and low-power operation. Architectural optimization enables supply voltages of the order of 1 V using standard CMOS technology. Several techniques can also be used to minimize the switched capacitance, including representation, optimizing signal correlations, minimizing spurious transitions, optimizing sequencing of operations, activity-driven power down, etc. The high- efficiency of DC-DC converter circuitry required for efficient, low-voltage and low-current level operation is described by Stratakos, Sullivan and Sanders. The application of various low-power techniques to a chip set for multimedia applications shows that orders-of-magnitude reduction in power consumption is possible. The book also features an analysis by Professor Meindl of the fundamental limits of power consumption achievable at all levels of the design hierarchy. Svensson, of ISI, describes emerging adiabatic switching techniques that can break the CV2f barrier and reduce the energy per computation at a fixed voltage. Srivastava, of AT&T, presents the application of aggressive shut-down techniques to microprocessor applications.

Low Voltage, Low Power VLSI Subsystems

Author: Kiat Seng Yeo

Publisher: McGraw Hill Professional

ISBN:

Category: Technology & Engineering

Page: 293

View: 759

Designers developing the low voltage, low power chips that enable small, portable devices, face a very particular set of challenges. This monograph details cutting-edge design techniques for the low power circuitry required by the many new miniaturized business and consumer products driving the electronics market.

Digital Design and Fabrication

Author: Vojin G. Oklobdzija

Publisher: CRC Press

ISBN:

Category: Computers

Page: 656

View: 533

In response to tremendous growth and new technologies in the semiconductor industry, this volume is organized into five, information-rich sections. Digital Design and Fabrication surveys the latest advances in computer architecture and design as well as the technologies used to manufacture and test them. Featuring contributions from leading experts, the book also includes a new section on memory and storage in addition to a new chapter on nonvolatile memory technologies. Developing advanced concepts, this sharply focused book— Describes new technologies that have become driving factors for the electronic industry Includes new information on semiconductor memory circuits, whose development best illustrates the phenomenal progress encountered by the fabrication and technology sector Contains a section dedicated to issues related to system power consumption Describes reliability and testability of computer systems Pinpoints trends and state-of-the-art advances in fabrication and CMOS technologies Describes performance evaluation measures, which are the bottom line from the user’s point of view Discusses design techniques used to create modern computer systems, including high-speed computer arithmetic and high-frequency design, timing and clocking, and PLL and DLL design