**Author**: Géza Schay

**Publisher:** Springer Science & Business Media

**ISBN:**

**Category:** Mathematics

**Page:** 330

**View:** 606

Building on the author's previous edition on the subject (Introduction to Linear Algebra, Jones & Bartlett, 1996), this book offers a refreshingly concise text suitable for a standard course in linear algebra, presenting a carefully selected array of essential topics that can be thoroughly covered in a single semester. Although the exposition generally falls in line with the material recommended by the Linear Algebra Curriculum Study Group, it notably deviates in providing an early emphasis on the geometric foundations of linear algebra. This gives students a more intuitive understanding of the subject and enables an easier grasp of more abstract concepts covered later in the course. The focus throughout is rooted in the mathematical fundamentals, but the text also investigates a number of interesting applications, including a section on computer graphics, a chapter on numerical methods, and many exercises and examples using MATLAB. Meanwhile, many visuals and problems (a complete solutions manual is available to instructors) are included to enhance and reinforce understanding throughout the book. Brief yet precise and rigorous, this work is an ideal choice for a one-semester course in linear algebra targeted primarily at math or physics majors. It is a valuable tool for any professor who teaches the subject.

This book covers the material of an introductory course in linear algebra. Topics include sets and maps, vector spaces, bases, linear maps, matrices, determinants, systems of linear equations, Euclidean spaces, eigenvalues and eigenvectors, diagonalization of self-adjoint operators, and classification of matrices. It contains multiple choice tests with commented answers.

Linear algebra permeates mathematics, perhaps more so than any other single subject. It plays an essential role in pure and applied mathematics, statistics, computer science, and many aspects of physics and engineering. This book conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that many of us wish we had been taught as graduate students. Roughly the first third of the book covers the basic material of a first course in linear algebra. The remaining chapters are devoted to applications drawn from vector calculus, numerical analysis, control theory, complex analysis, convexity and functional analysis. In particular, fixed point theorems, extremal problems, matrix equations, zero location and eigenvalue location problems, and matrices with nonnegative entries are discussed. Appendices on useful facts from analysis and supplementary information from complex function theory are also provided for the convenience of the reader. In this new edition, most of the chapters in the first edition have been revised, some extensively. The revisions include changes in a number of proofs, either to simplify the argument, to make the logic clearer or, on occasion, to sharpen the result. New introductory sections on linear programming, extreme points for polyhedra and a Nevanlinna-Pick interpolation problem have been added, as have some very short introductory sections on the mathematics behind Google, Drazin inverses, band inverses and applications of SVD together with a number of new exercises.

Ward Cheney and David Kincaid have developed Linear Algebra: Theory and Applications, Second Edition, a multi-faceted introductory textbook, which was motivated by their desire for a single text that meets the various requirements for differing courses within linear algebra. For theoretically-oriented students, the text guides them as they devise proofs and deal with abstractions by focusing on a comprehensive blend between theory and applications. For application-oriented science and engineering students, it contains numerous exercises that help them focus on understanding and learning not only vector spaces, matrices, and linear transformations, but uses of software tools available for use in applied linear algebra. Using a flexible design, it is an ideal textbook for instructors who wish to make their own choice regarding what material to emphasis, and to accentuate those choices with homework assignments from a large variety of exercises, both in the text and online.

Useful Concepts and Results at the Heart of Linear Algebra A one- or two-semester course for a wide variety of students at the sophomore/junior undergraduate level A Modern Introduction to Linear Algebra provides a rigorous yet accessible matrix-oriented introduction to the essential concepts of linear algebra. Concrete, easy-to-understand examples motivate the theory. The book first discusses vectors, Gaussian elimination, and reduced row echelon forms. It then offers a thorough introduction to matrix algebra, including defining the determinant naturally from the PA=LU factorization of a matrix. The author goes on to cover finite-dimensional real vector spaces, infinite-dimensional spaces, linear transformations, and complex vector spaces. The final chapter presents Hermitian and normal matrices as well as quadratic forms. Taking a computational, algebraic, and geometric approach to the subject, this book provides the foundation for later courses in higher mathematics. It also shows how linear algebra can be used in various areas of application. Although written in a "pencil and paper" manner, the text offers ample opportunities to enhance learning with calculators or computer usage. Solutions manual available for qualifying instructors

"Linear Algebra" is intended for a one-term course at the junior or senior level. It begins with an exposition of the basic theory of vector spaces and proceeds to explain the fundamental structure theorem for linear maps, including eigenvectors and eigenvalues, quadratic and hermitian forms, diagnolization of symmetric, hermitian, and unitary linear maps and matrices, triangulation, and Jordan canonical form. The book also includes a useful chapter on convex sets and the finite-dimensional Krein-Milman theorem. The presentation is aimed at the student who has already had some exposure to the elementary theory of matrices, determinants and linear maps. However the book is logically self-contained. In this new edition, many parts of the book have been rewritten and reorganized, and new exercises have been added.

In algebra, an entity is called linear if it can be expressed in terms of addition, and multiplication by a scalar; a linear expression is a sum of scalar multiples of the entities under consideration. Also, an operation is called linear if it preserves addition, and multiplication by a scalar. For example, if A and Bare 2 x 2 real matrices, v is a (row) vector in the real plane, and c is a real number, then v(A + B) = vA + vB and (cv)A = c(vA), that is, the process of applying a matrix to a vector is linear. Linear Algebra is the study of properties and systems which preserve these two operations, and the following pages present the basic theory and results of this important branch of pure mathematics. There are many books on linear algebra in the bookshops and libraries of the world, so why write another? A number of excellent texts were written about fifty years ago (see the bibliography); in the intervening period the 'style' of math ematical presentation has changed. Also, some of the more modern texts have concentrated on applications both inside and outside mathematics. There is noth ing wrong with this approach; these books serve a very useful purpose. But linear algebra contains some fine pure mathematics and so a modern text taking the pure mathematician's viewpoint was thought to be worthwhile.

Learn to: Solve linear algebra equations in several ways Put data in order with matrices Determine values with determinants Work with eigenvalues and eigenvectors Your hands-on guide to real-world applications of linear algebra Does linear algebra leave you feeling lost? No worries —this easy-to-follow guide explains the how and the why of solving linear algebra problems in plain English. From matrices to vector spaces to linear transformations, you'll understand the key concepts and see how they relate to everything from genetics to nutrition to spotted owl extinction. Line up the basics — discover several different approaches to organizing numbers and equations, and solve systems of equations algebraically or with matrices Relate vectors and linear transformations — link vectors and matrices with linear combinations and seek solutions of homogeneous systems Evaluate determinants — see how to perform the determinant function on different sizes of matrices and take advantage of Cramer's rule Hone your skills with vector spaces — determine the properties of vector spaces and their subspaces and see linear transformation in action Tackle eigenvalues and eigenvectors — define and solve for eigenvalues and eigenvectors and understand how they interact with specific matrices Open the book and find: Theoretical and practical ways of solving linear algebra problems Definitions of terms throughout and in the glossary New ways of looking at operations How linear algebra ties together vectors, matrices, determinants, and linear transformations Ten common mathematical representations of Greek letters Real-world applications of matrices and determinants

Text covers sets and mappings, vector spaces, matrices, linear functionals, other basics; plus linear programming, Tchebychev approximations, more. Ideal introduction for undergraduates; reference for theoretical, applied mathematicians. Problems and exercises.

Praise for the First Edition ". . .recommended for the teacher and researcher as well as forgraduate students. In fact, [it] has a place on everymathematician's bookshelf." -American Mathematical Monthly Linear Algebra and Its Applications, Second Edition presents linearalgebra as the theory and practice of linear spaces and linear mapswith a unique focus on the analytical aspects as well as thenumerous applications of the subject. In addition to thoroughcoverage of linear equations, matrices, vector spaces, game theory,and numerical analysis, the Second Edition featuresstudent-friendly additions that enhance the book's accessibility,including expanded topical coverage in the early chapters,additional exercises, and solutions to selected problems. Beginning chapters are devoted to the abstract structure of finitedimensional vector spaces, and subsequent chapters addressconvexity and the duality theorem as well as describe the basics ofnormed linear spaces and linear maps between normed spaces. Further updates and revisions have been included to reflect themost up-to-date coverage of the topic, including: The QR algorithm for finding the eigenvalues of a self-adjointmatrix The Householder algorithm for turning self-adjoint matricesinto tridiagonal form The compactness of the unit ball as a criterion of finitedimensionality of a normed linear space Additionally, eight new appendices have been added and cover topicssuch as: the Fast Fourier Transform; the spectral radius theorem;the Lorentz group; the compactness criterion for finitedimensionality; the characterization of commentators; proof ofLiapunov's stability criterion; the construction of the JordanCanonical form of matrices; and Carl Pearcy's elegant proof ofHalmos' conjecture about the numerical range of matrices. Clear, concise, and superbly organized, Linear Algebra and ItsApplications, Second Edition serves as an excellent text foradvanced undergraduate- and graduate-level courses in linearalgebra. Its comprehensive treatment of the subject also makes itan ideal reference or self-study for industry professionals.