**Author**: MITTAL, V. K.

**Publisher:** PHI Learning Pvt. Ltd.

**ISBN:**

**Category:** Science

**Page:** 415

**View:** 832

This thoroughly revised book, now in its Fourth Edition, continues to provide a comprehensive introduction to this increasingly important area of nuclear and particle physics. It combines coverage of basic concepts, principles and applications, along with the latest developments. Beginning with the historical developments of the subject, properties and constituents of the nucleus, quantitative facts about nucleus, etc., the book moves on to give insights into nuclear models, phenomenon of radioactivity and its applications in various fields, nuclear reactions including reactions in the Sun and stars, photoelectric and Compton effects, pair creation, different particle accelerators and radiation detectors. UNIQUE FEATURES • Contains actual experimental data • Large number of solved problems to help students comprehend the concepts with ease • Provides unsolved problems with answers and review questions to test the students' comprehension of the subject NEW TO THE FOURTH EDITION • Some sections have been revised and enlarged to enhance their comprehension, such as the neutron activation analysis, scintillation and HPGe detectors • Includes a list of accelerators • Provides several new solved and unsolved problems TARGET AUDIENCE • B.Sc./M.Sc. (Physics)

This thoroughly revised book, now in its third edition, continues to provide a comprehensive introduction to this increasingly important area of nuclear and particle physics. It combines coverage of basic concepts, principles and applications, along with the latest developments. Beginning with the historical developments of the subject, properties and constituents of the nucleus, quantitative facts about nucleus, etc., the book moves on to give insights into nuclear models, phenomenon of radioactivity and its applications in various fields, nuclear reactions including reactions in sun and stars, photoelectric and Compton effects, pair production, particle accelerators and types of radiation detectors. The text also presents an extensive discussion on elementary particles and their fundamental reactions, fundamental forces, conservation laws and the quark model. Besides updating and revising the existing text, the new edition amplifies several sections across the book for easy understanding of the topics discussed. The text is designed for the students of B.Sc. (Physics), though it can also serve as introductory review material for M.Sc. (Physics) students. Key Features • Contains actual experimental data. • Includes a large number of solved problems to help students comprehend the concepts with ease. • Provides answers to unsolved problems. • Gives review questions to test the student’s comprehension of the subject.

This manual gives the solutions to all problems given in the book by A Das and T Ferbel. The problems are discussed in full detail, to help both the student and teacher get a better grasp of the issues brought up in the text and in the associated problems.

' The original edition of Introduction to Nuclear and Particle Physics was used with great success for single-semester courses on nuclear and particle physics offered by American and Canadian universities at the undergraduate level. It was also translated into German, and used overseas. Being less formal but well-written, this book is a good vehicle for learning the more intuitive rather than formal aspects of the subject. It is therefore of value to scientists with a minimal background in quantum mechanics, but is sufficiently substantive to have been recommended for graduate students interested in the fields covered in the text. In the second edition, the material begins with an exceptionally clear development of Rutherford scattering and, in the four following chapters, discusses sundry phenomenological issues concerning nuclear properties and structure, and general applications of radioactivity and of the nuclear force. This is followed by two chapters dealing with interactions of particles in matter, and how these characteristics are used to detect and identify such particles. A chapter on accelerators rounds out the experimental aspects of the field. The final seven chapters deal with elementary-particle phenomena, both before and after the realization of the Standard Model. This is interspersed with discussion of symmetries in classical physics and in the quantum domain, bringing into full focus the issues concerning CP violation, isotopic spin, and other symmetries. The final three chapters are devoted to the Standard Model and to possibly new physics beyond it, emphasizing unification of forces, supersymmetry, and other exciting areas of current research. The book contains several appendices on related subjects, such as special relativity, the nature of symmetry groups, etc. There are also many examples and problems in the text that are of value in gauging the reader's understanding of the material. Contents:Rutherford ScatteringNuclear PhenomenologyNuclear ModelsNuclear RadiationApplications of Nuclear PhysicsEnergy Deposition in MediaParticle DetectionAcceleratorsProperties and Interactions of Elementary ParticlesSymmetriesDiscrete TransformationsNeutral Kaons, Oscillations, and CP ViolationFormulation of the Standard ModelStandard Model and Confrontation with DataBeyond the Standard Model Readership: Advanced undergraduates and researchers in nuclear and particle physics. Keywords:Rutherford Scattering;Nuclear Properties;Nuclear Structure;Elementary Particles;Sub-Structure of Particles;Particle Detectors;Interactions in Matter;The Standard Model;Symmetries of Nature;Theories of Nuclear and Particle Structure;Radioactivity;SupersymmetryReviews: “The book by Das and Ferbel is particularly suited as a basis for a one-semester course on both subjects since it contains a very concise introduction to those topics and I like very much the outline and contents of this book.” Kay Konigsmann Universität Freiburg, Germany “The book provides an introduction to the subject very well suited for the introductory course for physics majors. Presentation is very clear and nicely balances the issues of nuclear and particle physics, exposes both theoretical ideas and modern experimental methods. Presentation is also very economic and one can cover most of the book in a one-semester course. In the second edition, the authors updated the contents to reflect the very recent developments in the theory and experiment. They managed to do it without substantial increase of the size of the book. I used the first edition several times to teach the course ‘Introduction to Subatomic Physics’ and I am looking forward to use this new edition to teach the course next year.” Professor Mark Strikman Pennsylvania State University, USA “This book can be recommended to those who find elementary particle physics of absorbing interest.” Contemporary Physics '

An accessible introduction to nuclear and particle physics with equal coverage of both topics, this text covers all the standard topics in particle and nuclear physics thoroughly and provides a few extras, including chapters on experimental methods; applications of nuclear physics including fission, fusion and biomedical applications; and unsolved problems for the future. It includes basic concepts and theory combined with current and future applications. An excellent resource for physics and astronomy undergraduates in higher-level courses, this text also serves well as a general reference for graduate studies.

A clear and concise introduction to nuclear physics suitable for a core undergraduate physics course.

An Introduction to the Standard Model of Particle Physics familiarizes readers with what is considered tested and accepted and in so doing, gives them a grounding in particle physics in general. Whenever possible, Dr. Mann takes an historical approach showing how the model is linked to the physics that most of us have learned in less challenging areas. Dr. Mann reviews special relativity and classical mechanics, symmetries, conservation laws, and particle classification; then working from the tested paradigm of the model itself, he: Describes the Standard Model in terms of its electromagnetic, strong, and weak components Explores the experimental tools and methods of particle physics Introduces Feynman diagrams, wave equations, and gauge invariance, building up to the theory of Quantum Electrodynamics Describes the theories of the Strong and Electroweak interactions Uncovers frontier areas and explores what might lie beyond our current concepts of the subatomic world Those who work through the material will develop a solid command of the basics of particle physics. The book does require a knowledge of special relativity, quantum mechanics, and electromagnetism, but most importantly it requires a hunger to understand at the most fundamental level: why things exist and how it is that anything happens. This book will prepare students and others for further study, but most importantly it will prepare them to open their minds to the mysteries that lie ahead. Ultimately, the Large Hadron Collider may prove the model correct, helping so many realize their greatest dreams ... or it might poke holes in the model, leaving us to wonder an even more exciting possibility: that the answers lie in possibilities so unique that we have not even dreamt of them.

This highly-regarded text provides a comprehensive introduction to modern particle physics. Extensively rewritten and updated, this 4th edition includes developments in elementary particle physics, as well as its connections with cosmology and astrophysics. As in previous editions, the balance between experiment and theory is continually emphasised. The stress is on the phenomenological approach and basic theoretical concepts rather than rigorous mathematical detail. Short descriptions are given of some of the key experiments in the field, and how they have influenced our thinking. Although most of the material is presented in the context of the Standard Model of quarks and leptons, the shortcomings of this model and new physics beyond its compass (such as supersymmetry, neutrino mass and oscillations, GUTs and superstrings) are also discussed. The text includes many problems and a detailed and annotated further reading list.