Introduction to Modern Cryptography, Second Edition

Author: Jonathan Katz

Publisher: CRC Press

ISBN:

Category: Computers

Page: 603

View: 491

Cryptography is ubiquitous and plays a key role in ensuring data secrecy and integrity as well as in securing computer systems more broadly. Introduction to Modern Cryptography provides a rigorous yet accessible treatment of this fascinating subject. The authors introduce the core principles of modern cryptography, with an emphasis on formal definitions, clear assumptions, and rigorous proofs of security. The book begins by focusing on private-key cryptography, including an extensive treatment of private-key encryption, message authentication codes, and hash functions. The authors also present design principles for widely used stream ciphers and block ciphers including RC4, DES, and AES, plus provide provable constructions of stream ciphers and block ciphers from lower-level primitives. The second half of the book covers public-key cryptography, beginning with a self-contained introduction to the number theory needed to understand the RSA, Diffie-Hellman, and El Gamal cryptosystems (and others), followed by a thorough treatment of several standardized public-key encryption and digital signature schemes. Integrating a more practical perspective without sacrificing rigor, this widely anticipated Second Edition offers improved treatment of: Stream ciphers and block ciphers, including modes of operation and design principles Authenticated encryption and secure communication sessions Hash functions, including hash-function applications and design principles Attacks on poorly implemented cryptography, including attacks on chained-CBC encryption, padding-oracle attacks, and timing attacks The random-oracle model and its application to several standardized, widely used public-key encryption and signature schemes Elliptic-curve cryptography and associated standards such as DSA/ECDSA and DHIES/ECIES Containing updated exercises and worked examples, Introduction to Modern Cryptography, Second Edition can serve as a textbook for undergraduate- or graduate-level courses in cryptography, a valuable reference for researchers and practitioners, or a general introduction suitable for self-study.

Introduction to Modern Cryptography

Principles and Protocols

Author: Jonathan Katz

Publisher: CRC Press

ISBN:

Category: Computers

Page: 552

View: 429

Cryptography plays a key role in ensuring the privacy and integrity of data and the security of computer networks. Introduction to Modern Cryptography provides a rigorous yet accessible treatment of modern cryptography, with a focus on formal definitions, precise assumptions, and rigorous proofs. The authors introduce the core principles of modern cryptography, including the modern, computational approach to security that overcomes the limitations of perfect secrecy. An extensive treatment of private-key encryption and message authentication follows. The authors also illustrate design principles for block ciphers, such as the Data Encryption Standard (DES) and the Advanced Encryption Standard (AES), and present provably secure constructions of block ciphers from lower-level primitives. The second half of the book focuses on public-key cryptography, beginning with a self-contained introduction to the number theory needed to understand the RSA, Diffie-Hellman, El Gamal, and other cryptosystems. After exploring public-key encryption and digital signatures, the book concludes with a discussion of the random oracle model and its applications. Serving as a textbook, a reference, or for self-study, Introduction to Modern Cryptography presents the necessary tools to fully understand this fascinating subject.

Introduction to Modern Cryptography, Third Edition

Author: Jonathan Katz

Publisher: Chapman & Hall/CRC

ISBN:

Category:

Page: 650

View: 819

Now the most used texbook for introductory cryptography courses in both mathematics and computer science, the Third Edition builds upon previous editions by offering several new sections, topics, and exercises. The authors introduce the core principles of modern cryptography, with an emphasis on formal definitions, clear assumptions, and rigorous proofs of security. The book begins by focusing on private-key cryptography. The second half covers public-key cryptography, beginning with a self-contained introduction to the number theory needed to understand the RSA, Diffie-Hellman, and El Gamal cryptosystems (and others), and adds coverage of post-quantum cryptograpy to this edition.

Serious Cryptography

A Practical Introduction to Modern Encryption

Author: Jean-Philippe Aumasson

Publisher: No Starch Press

ISBN:

Category: Computers

Page: 312

View: 221

This practical guide to modern encryption breaks down the fundamental mathematical concepts at the heart of cryptography without shying away from meaty discussions of how they work. You’ll learn about authenticated encryption, secure randomness, hash functions, block ciphers, and public-key techniques such as RSA and elliptic curve cryptography. You’ll also learn: - Key concepts in cryptography, such as computational security, attacker models, and forward secrecy - The strengths and limitations of the TLS protocol behind HTTPS secure websites - Quantum computation and post-quantum cryptography - About various vulnerabilities by examining numerous code examples and use cases - How to choose the best algorithm or protocol and ask vendors the right questions Each chapter includes a discussion of common implementation mistakes using real-world examples and details what could go wrong and how to avoid these pitfalls. Whether you’re a seasoned practitioner or a beginner looking to dive into the field, Serious Cryptography will provide a complete survey of modern encryption and its applications.

An Introduction to Mathematical Cryptography

Author: Jeffrey Hoffstein

Publisher: Springer

ISBN:

Category: Mathematics

Page: 538

View: 688

This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included.

Introduction to Cryptography

Principles and Applications

Author: Hans Delfs

Publisher: Springer Science & Business Media

ISBN:

Category: Computers

Page: 310

View: 207

This book covers key concepts of cryptography, from encryption and digital signatures to cryptographic protocols, presenting techniques and protocols for key exchange, user ID, electronic elections and digital cash. Advanced topics include bit security of one-way functions and computationally perfect pseudorandom bit generators. Assuming no special background in mathematics, it includes chapter-ending exercises and the necessary algebra, number theory and probability theory in the appendix. This edition offers new material including a complete description of the AES, a section on cryptographic hash functions, new material on random oracle proofs, and a new section on public-key encryption schemes that are provably secure against adaptively-chosen-ciphertext attacks.

A Classical Introduction to Cryptography

Applications for Communications Security

Author: Serge Vaudenay

Publisher: Springer Science & Business Media

ISBN:

Category: Computers

Page: 336

View: 522

A Classical Introduction to Cryptography: Applications for Communications Security introduces fundamentals of information and communication security by providing appropriate mathematical concepts to prove or break the security of cryptographic schemes. This advanced-level textbook covers conventional cryptographic primitives and cryptanalysis of these primitives; basic algebra and number theory for cryptologists; public key cryptography and cryptanalysis of these schemes; and other cryptographic protocols, e.g. secret sharing, zero-knowledge proofs and undeniable signature schemes. A Classical Introduction to Cryptography: Applications for Communications Security is designed for upper-level undergraduate and graduate-level students in computer science. This book is also suitable for researchers and practitioners in industry. A separate exercise/solution booklet is available as well, please go to www.springeronline.com under author: Vaudenay for additional details on how to purchase this booklet.

Modern Cryptography, Probabilistic Proofs and Pseudorandomness

Author: Oded Goldreich

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 183

View: 709

Cryptography is one of the most active areas in current mathematics research and applications. This book focuses on cryptography along with two related areas: the study of probabilistic proof systems, and the theory of computational pseudorandomness. Following a common theme that explores the interplay between randomness and computation, the important notions in each field are covered, as well as novel ideas and insights.

Introduction to Cryptography

Author: Johannes Buchmann

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 338

View: 293

This book explains the basic methods of modern cryptography. It is written for readers with only basic mathematical knowledge who are interested in modern cryptographic algorithms and their mathematical foundation. Several exercises are included following each chapter. From the reviews: "Gives a clear and systematic introduction into the subject whose popularity is ever increasing, and can be recommended to all who would like to learn about cryptography." --ZENTRALBLATT MATH

Introduction to Cryptography with Java Applets

Author: David Bishop

Publisher: Jones & Bartlett Learning

ISBN:

Category: Computers

Page: 370

View: 847

Introduction to Cryptography with Java Applets covers the mathematical basis of cryptography and cryptanalysis, like linear diophantine equations, linear congruences, systems of linear congruences, quadratic congruences, and exponential congruences. The chapters present theorems and proofs, and many mathematical examples.Cryptography with Java Applets also covers programming ciphers and cryptanalytic attacks on ciphers. In addition many other types of cryptographic applications, like digest functions, shadows, database encryption, message signing, establishing keys, large integer arithmetic, pseudo-random bit generation, and authentication are included. The author has developed various Java crypto classes to perform these functions, and many programming exercises are assigned to the reader. The reader should be someone with a basic working knowledge of Java, but knowledge of number theory or cryptography is not necessary. What sets this Introduction to Cyrptography with Java Applets apart from other crypto books is the level of interactivity with the reader. There are many Java applets on the World Wide Web that students can run from their computers to see various ciphers and other crypto concepts at work. They do not need a Java compiler or interpreter to do this, just an Internet connection.