*An Introduction to Derivative Pricing*

**Author**: Martin Baxter

**Publisher:** Cambridge University Press

**ISBN:**

**Category:** Business & Economics

**Page:** 233

**View:** 347

A rigorous introduction to the mathematics of pricing, construction and hedging of derivative securities.

A text for first courses in financial calculus; lots of examples and exercises, first published in 2002.

In recent years the growing importance of derivative products financial markets has increased financial institutions' demands for mathematical skills. This book introduces the mathematical methods of financial modeling with clear explanations of the most useful models. Introduction to Stochastic Calculus begins with an elementary presentation of discrete models, including the Cox-Ross-Rubenstein model. This book will be valued by derivatives trading, marketing, and research divisions of investment banks and other institutions, and also by graduate students and research academics in applied probability and finance theory.

Modelling with the Ito integral or stochastic differential equations has become increasingly important in various applied fields, including physics, biology, chemistry and finance. However, stochastic calculus is based on a deep mathematical theory. This book is suitable for the reader without a deep mathematical background. It gives an elementary introduction to that area of probability theory, without burdening the reader with a great deal of measure theory. Applications are taken from stochastic finance. In particular, the Black -- Scholes option pricing formula is derived. The book can serve as a text for a course on stochastic calculus for non-mathematicians or as elementary reading material for anyone who wants to learn about Ito calculus and/or stochastic finance.

Stochastic calculus has important applications to mathematical finance. This book will appeal to practitioners and students who want an elementary introduction to these areas. From the reviews: "As the preface says, ‘This is a text with an attitude, and it is designed to reflect, wherever possible and appropriate, a prejudice for the concrete over the abstract’. This is also reflected in the style of writing which is unusually lively for a mathematics book." --ZENTRALBLATT MATH

This book provides an overview of the practice of Islamic finance and the historical roots that define its modes of operation. The focus of the book is analytical and forward-looking. It shows that Islamic finance exists mainly as a form of rent-seeking legal-arbitrage. In every aspect of finance - from personal loans to investment banking, and from market structure to corporate governance - Islamic finance aims to replicate in Islamic forms the substantive functions of contemporary financial instruments, markets, and institutions. By attempting to replicate the substance of contemporary financial practice using pre-modern contract forms, Islamic finance has arguably failed to serve the objectives of Islamic law. This book proposes refocusing Islamic finance on substance rather than form. This approach would entail abandoning the paradigm of 'Islamization' of every financial practice. It would also entail reorienting the brand-name of Islamic finance to emphasize issues of community banking, micro-finance, and socially responsible investment.

Financial mathematics and its calculus introduced in an accessible manner for undergraduate students. Topics covered include financial indices as stochastic processes, Ito's stochastic calculus, the Fokker-Planck Equation and extra MATLAB/SCILAB code.

Option Valuation: A First Course in Financial Mathematics provides a straightforward introduction to the mathematics and models used in the valuation of financial derivatives. It examines the principles of option pricing in detail via standard binomial and stochastic calculus models. Developing the requisite mathematical background as needed, the text presents an introduction to probability theory and stochastic calculus suitable for undergraduate students in mathematics, economics, and finance. The first nine chapters of the book describe option valuation techniques in discrete time, focusing on the binomial model. The author shows how the binomial model offers a practical method for pricing options using relatively elementary mathematical tools. The binomial model also enables a clear, concrete exposition of fundamental principles of finance, such as arbitrage and hedging, without the distraction of complex mathematical constructs. The remaining chapters illustrate the theory in continuous time, with an emphasis on the more mathematically sophisticated Black-Scholes-Merton model. Largely self-contained, this classroom-tested text offers a sound introduction to applied probability through a mathematical finance perspective. Numerous examples and exercises help students gain expertise with financial calculus methods and increase their general mathematical sophistication. The exercises range from routine applications to spreadsheet projects to the pricing of a variety of complex financial instruments. Hints and solutions to odd-numbered problems are given in an appendix and a full solutions manual is available for qualifying instructors.

This book presents a concise and rigorous treatment of stochastic calculus. It also gives its main applications in finance, biology and engineering. In finance, the stochastic calculus is applied to pricing options by no arbitrage. In biology, it is applied to populations' models, and in engineering it is applied to filter signal from noise. Not everything is proved, but enough proofs are given to make it a mathematically rigorous exposition.This book aims to present the theory of stochastic calculus and its applications to an audience which possesses only a basic knowledge of calculus and probability. It may be used as a textbook by graduate and advanced undergraduate students in stochastic processes, financial mathematics and engineering. It is also suitable for researchers to gain working knowledge of the subject. It contains many solved examples and exercises making it suitable for self study.In the book many of the concepts are introduced through worked-out examples, eventually leading to a complete, rigorous statement of the general result, and either a complete proof, a partial proof or a reference. Using such structure, the text will provide a mathematically literate reader with rapid introduction to the subject and its advanced applications. The book covers models in mathematical finance, biology and engineering. For mathematicians, this book can be used as a first text on stochastic calculus or as a companion to more rigorous texts by a way of examples and exercises./a