Elementary Differential Geometry

Author: A.N. Pressley

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 332

View: 127

Pressley assumes the reader knows the main results of multivariate calculus and concentrates on the theory of the study of surfaces. Used for courses on surface geometry, it includes intersting and in-depth examples and goes into the subject in great detail and vigour. The book will cover three-dimensional Euclidean space only, and takes the whole book to cover the material and treat it as a subject in its own right.

Elementary Differential Geometry

Author: Christian Bär

Publisher: Cambridge University Press

ISBN:

Category: Mathematics

Page: 317

View: 640

This easy-to-read introduction takes the reader from elementary problems through to current research. Ideal for courses and self-study.

Elementary Differential Geometry, Revised 2nd Edition

Author: Barrett O'Neill

Publisher: Elsevier

ISBN:

Category: Mathematics

Page: 520

View: 633

Written primarily for students who have completed the standard first courses in calculus and linear algebra, Elementary Differential Geometry, Revised 2nd Edition, provides an introduction to the geometry of curves and surfaces. The Second Edition maintained the accessibility of the first, while providing an introduction to the use of computers and expanding discussion on certain topics. Further emphasis was placed on topological properties, properties of geodesics, singularities of vector fields, and the theorems of Bonnet and Hadamard. This revision of the Second Edition provides a thorough update of commands for the symbolic computation programs Mathematica or Maple, as well as additional computer exercises. As with the Second Edition, this material supplements the content but no computer skill is necessary to take full advantage of this comprehensive text. Over 36,000 copies sold worldwide Accessible, practical yet rigorous approach to a complex topic--also suitable for self-study Extensive update of appendices on Mathematica and Maple software packages Thorough streamlining of second edition's numbering system Fuller information on solutions to odd-numbered problems Additional exercises and hints guide students in using the latest computer modeling tools

Elementary Differential Geometry

Author: Barrett O'Neill

Publisher: Taylor & Francis US

ISBN:

Category: Mathematics

Page: 482

View: 843

Written primarily for readers who have completed the standard first courses in calculus and linear algebra, Elementary Differential Geometry, Second Edition provides an introduction to the geometry of curves and surfaces. Although the popular First Edition has been extensively modified, this Second Edition maintains the elementary character of that volume, while providing an introduction to the use of computers and expanding discussion on certain topics. Further emphasis has been placed on topological properties, properties of geodesics, singularities of vector fields, and the theorems of Bonnet and Hadamard. For readers with access to the symbolic computation programs, Mathematica or Maple, the book includes approximately 30 optional computer exercises. These are not intended as an essential part of the book, but rather an extension. No computer skill is necessary to take full advantage of this comprehensive text. * Gives detailed examples for all essential ideas * Provides more than 300 exercises * Features more than 200 illustrations * Includes an introduction to using computers, and supplies answers to computer exercises given for both Mathematica and Maple systems

The Elementary Differential Geometry of Plane Curves

Author: R H 1889-1944 Fowler

Publisher: Franklin Classics

ISBN:

Category:

Page: 120

View: 133

This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers

Author: Hung Nguyen-Schäfer

Publisher: Springer

ISBN:

Category: Mathematics

Page: 241

View: 700

Tensors and methods of differential geometry are very useful mathematical tools in many fields of modern physics and computational engineering including relativity physics, electrodynamics, computational fluid dynamics (CFD), continuum mechanics, aero and vibroacoustics and cybernetics. This book comprehensively presents topics, such as bra-ket notation, tensor analysis and elementary differential geometry of a moving surface. Moreover, authors intentionally abstain from giving mathematically rigorous definitions and derivations that are however dealt with as precisely as possible. The reader is provided with hands-on calculations and worked-out examples at which he will learn how to handle the bra-ket notation, tensors and differential geometry and to use them in the physical and engineering world. The target audience primarily comprises graduate students in physics and engineering, research scientists and practicing engineers.

Lectures on Classical Differential Geometry

Author: Dirk Jan Struik

Publisher: Courier Corporation

ISBN:

Category: Mathematics

Page: 232

View: 776

Elementary, yet authoritative and scholarly, this book offers an excellent brief introduction to the classical theory of differential geometry. It is aimed at advanced undergraduate and graduate students who will find it not only highly readable but replete with illustrations carefully selected to help stimulate the student's visual understanding of geometry. The text features an abundance of problems, most of which are simple enough for class use, and often convey an interesting geometrical fact. A selection of more difficult problems has been included to challenge the ambitious student. Written by a noted mathematician and historian of mathematics, this volume presents the fundamental conceptions of the theory of curves and surfaces and applies them to a number of examples. Dr. Struik has enhanced the treatment with copious historical, biographical, and bibliographical references that place the theory in context and encourage the student to consult original sources and discover additional important ideas there. For this second edition, Professor Struik made some corrections and added an appendix with a sketch of the application of Cartan's method of Pfaffians to curve and surface theory. The result was to further increase the merit of this stimulating, thought-provoking text — ideal for classroom use, but also perfectly suited for self-study. In this attractive, inexpensive paperback edition, it belongs in the library of any mathematician or student of mathematics interested in differential geometry.

Methods of Information Geometry

Author: Shun-ichi Amari

Publisher: American Mathematical Soc.

ISBN:

Category: Mathematics

Page: 206

View: 367

Information geometry provides the mathematical sciences with a new framework of analysis. It has emerged from the investigation of the natural differential geometric structure on manifolds of probability distributions, which consists of a Riemannian metric defined by the Fisher information and a one-parameter family of affine connections called the $\alpha$-connections. The duality between the $\alpha$-connection and the $(-\alpha)$-connection together with the metric play an essential role in this geometry. This kind of duality, having emerged from manifolds of probability distributions, is ubiquitous, appearing in a variety of problems which might have no explicit relation to probability theory. Through the duality, it is possible to analyze various fundamental problems in a unified perspective. The first half of this book is devoted to a comprehensive introduction to the mathematical foundation of information geometry, including preliminaries from differential geometry, the geometry of manifolds or probability distributions, and the general theory of dual affine connections. The second half of the text provides an overview of many areas of applications, such as statistics, linear systems, information theory, quantum mechanics, convex analysis, neural networks, and affine differential geometry. The book can serve as a suitable text for a topics course for advanced undergraduates and graduate students.

Differential Geometry

Author: Heinrich W. Guggenheimer

Publisher: Courier Corporation

ISBN:

Category: Mathematics

Page: 400

View: 901

This text contains an elementary introduction to continuous groups and differential invariants; an extensive treatment of groups of motions in euclidean, affine, and riemannian geometry; more. Includes exercises and 62 figures.