Einführung in die Zahlentheorie

Author: Peter Bundschuh

Publisher: Springer

ISBN:

Category: Mathematics

Page: 336

View: 307

Inzwischen liegt, erneut überarbeitet und aktualisiert, die fünfte Auflage dieses Lehrbuchs vor, das auch der geschichtlichen Entwicklung der Zahlentheorie besondere Aufmerksamkeit schenkt. Dabei werden nicht grundsätzlich die ersten publizierten Beweise zitiert, vielmehr erfährt der Leser den historischen Urheber eines Resultats und erhält Hinweise auf Verschärfungen und Verallgemeinerungen. Dies erlaubt ihm, die Denkweisen und -richtungen nachzuvollziehen, die zur modernen Zahlentheorie führten. Aus den Besprechungen: "... Die Darstellung ist ausführlich, sehr gut lesbar und kommt ohne spezielle Kenntnisse aus. Das Buch kann daher jedem Studenten schon im nullten Semester empfohlen werden." Monatshefte für Mathematik, Vol. 108-1989.2-3

Einführung in die analytische Zahlentheorie

Author: Jörg Brüdern

Publisher: Birkhäuser

ISBN:

Category: Mathematics

Page: 238

View: 169

Diese Einführung in die analytische Zahlentheorie wendet sich an Studierende der Mathematik, die bereits mit der Funktionentheorie und den einfachsten Grundtatsachen der Zahlentheorie vertraut sind und ihre Kenntnisse in Zahlentheorie vertiefen möchten. Die ausführliche, motivierende Darstellung der behandelten Themen soll den Einstieg in die Ideen und technischen Details erleichtern. Geeignet als Begleitlektüre zu Vorlesungen und zum Selbststudium. Mit zahlreichen Aufgaben und Lösungshinweisen.

Die Korrespondenz 1923 - 1934

Author: Emil Artin

Publisher: Universitätsverlag Göttingen

ISBN:

Category: Class field theory

Page: 499

View: 327

This book contains the full text of the letters from Emil Artin to Helmut Hasse, as they are preserved in the Handschriftenabteilung of the Göttingen University Library. There are 49 such letters, written in the years 1923-1934, discussing mathematical problems of the time. The corresponding letters in the other direction, i.e., from Hasse to Artin, seem to be lost. We have supplemented Artin's letters by detailed comments, combined with a description of the mathematical environment of Hasse and Artin, and of the relevant literature. In this way it has become possible to sufficiently reconstruct the content of the corresponding letters from Hasse to Artin too. Artin and Hasse were among those who shaped modern algebraic number theory, in particular class field theory. Their correspondence admits a view of the ideas which led to the great achievements of their time, starting from Artin's L-series and his reciprocity law towards Hasses norm symbol, local class field theory and the Local-Global Principle. These letters are a valuable source for understanding the rise and development of mathematical ideas and notions as we see them today. The book is a follow-up of our earlier book on the correspondence between Hasse and Emmy Noether. It is thus the second of a series which aims to open access to the rich collection of Hasse's mathematical letters and notes contained in the Göttingen Handschriftenabteilung.

Lectures on the Theory of Algebraic Numbers

Author: E. T. Hecke

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 242

View: 998

. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.