Differential Geometry and Topology

With a View to Dynamical Systems

Author: Keith Burns

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 400

View: 300

Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.

Geometry, Topology and Physics

Author: Mikio Nakahara

Publisher: Taylor & Francis

ISBN:

Category: Mathematics

Page: 596

View: 954

Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.

An Introduction to Differential Geometry and Topology in Mathematical Physics

Author: Wang Rong

Publisher: World Scientific

ISBN:

Category: Mathematics

Page: 220

View: 676

This book gives an outline of the developments of differential geometry and topology in the twentieth century, especially those which will be closely related to new discoveries in theoretical physics. Contents:Differential Manifolds:Preliminary Knowledge and DefinitionsProperties and Operations of Tangent Vectors and Cotangent VectorsCurvature Tensors, Torsion Tensors, Covariant Differentials and Adjoint Exterior DifferentialsRiemannian GeometryComplex ManifoldGlobal Topological Properties:Homotopy Equivalence and Homotopy Groups of ManifoldsHomology and de Rham CohomologyFibre Bundles and Their Topological StructuresConnections and Curvatures on Fibre BundlesCharacteristic Classes of Fibre BundlesIndex Theorem and 4-Manifolds:Index Theorems for Manifolds Without BoundaryEssential Features of 4-Manifolds Readership: Mathematicians and physicists. Keywords:Homotopy Theory;Index Theorems;Riemannian Geometry;Complex Manifolds;Homology;De Rham Cohomology;Fibre Bundles;Characteristic Classes

A Short Course in Differential Geometry and Topology

Author: A. T. Fomenko

Publisher:

ISBN:

Category: Geometry, Differential

Page: 273

View: 408

This volume is intended for graduate and research students in mathematics and physics. It covers general topology, nonlinear co-ordinate systems, theory of smooth manifolds, theory of curves and surfaces, transformation groups, tensor analysis and Riemannian geometry, theory of integration and homologies, fundamental groups and variational principles in Riemannian geometry. The text is presented in a form that is easily accessible to students and is supplemented by a large number of examples, problems, drawings and appendices.

Differential Geometry and Topology, Discrete and Computational Geometry

Author: Mohamed Boucetta

Publisher: IOS Press

ISBN:

Category: Mathematics

Page: 373

View: 265

The aim of this volume is to give an introduction and overview to differential topology, differential geometry and computational geometry with an emphasis on some interconnections between these three domains of mathematics. The chapters give the background required to begin research in these fields or at their interfaces. They introduce new research domains and both old and new conjectures in these different subjects show some interaction between other sciences close to mathematics. Topics discussed are; the basis of differential topology and combinatorial topology, the link between differential geometry and topology, Riemanian geometry (Levi-Civita connextion, curvature tensor, geodesic, completeness and curvature tensor), characteristic classes (to associate every fibre bundle with isomorphic fiber bundles), the link between differential geometry and the geometry of non smooth objects, computational geometry and concrete applications such as structural geology and graphism.

Differential Geometry

Connections, Curvature, and Characteristic Classes

Author: Loring W. Tu

Publisher: Springer

ISBN:

Category: Mathematics

Page: 347

View: 339

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

A First Course in Geometric Topology and Differential Geometry

Author: Ethan D. Bloch

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 421

View: 199

The uniqueness of this text in combining geometric topology and differential geometry lies in its unifying thread: the notion of a surface. With numerous illustrations, exercises and examples, the student comes to understand the relationship of the modern abstract approach to geometric intuition. The text is kept at a concrete level, avoiding unnecessary abstractions, yet never sacrificing mathematical rigor. The book includes topics not usually found in a single book at this level.

From Differential Geometry to Non-commutative Geometry and Topology

Author: Neculai S. Teleman

Publisher: Springer Nature

ISBN:

Category: Mathematics

Page: 398

View: 370

This book aims to provide a friendly introduction to non-commutative geometry. It studies index theory from a classical differential geometry perspective up to the point where classical differential geometry methods become insufficient. It then presents non-commutative geometry as a natural continuation of classical differential geometry. It thereby aims to provide a natural link between classical differential geometry and non-commutative geometry. The book shows that the index formula is a topological statement, and ends with non-commutative topology.

Differential Geometry, Global Analysis, and Topology

Proceedings of a Special Session of the Canadian Mathematical Society Summer Meeting Held June 1-3, 1990

Author: Canadian Mathematical Society. Summer Meeting

Publisher: American Mathematical Soc.

ISBN:

Category: Mathematics

Page: 185

View: 906

This book contains the proceedings of a special session on differential geometry, global analysis, and topology, held during the Summer Meeting of the Canadian Mathematical Society in June 1990 at Dalhousie University in Halifax. The session featured many fascinating talks on topics of current interest. The articles collected here reflect the diverse interests of the participants but are united by the common theme of the interplay among geometry, global analysis, and topology. Some of the topics include applications to low dimensional manifolds, control theory, integrable systems, Lie algebras of operators, and algebraic geometry. Readers will appreciate the insight the book provides into some recent trends in these areas.

Introduction to Geometry and Topology

Author: Werner Ballmann

Publisher: Birkhäuser

ISBN:

Category: Mathematics

Page: 169

View: 550

This book provides an introduction to topology, differential topology, and differential geometry. It is based on manuscripts refined through use in a variety of lecture courses. The first chapter covers elementary results and concepts from point-set topology. An exception is the Jordan Curve Theorem, which is proved for polygonal paths and is intended to give students a first glimpse into the nature of deeper topological problems. The second chapter of the book introduces manifolds and Lie groups, and examines a wide assortment of examples. Further discussion explores tangent bundles, vector bundles, differentials, vector fields, and Lie brackets of vector fields. This discussion is deepened and expanded in the third chapter, which introduces the de Rham cohomology and the oriented integral and gives proofs of the Brouwer Fixed-Point Theorem, the Jordan-Brouwer Separation Theorem, and Stokes's integral formula. The fourth and final chapter is devoted to the fundamentals of differential geometry and traces the development of ideas from curves to submanifolds of Euclidean spaces. Along the way, the book discusses connections and curvature--the central concepts of differential geometry. The discussion culminates with the Gauß equations and the version of Gauß's theorema egregium for submanifolds of arbitrary dimension and codimension. This book is primarily aimed at advanced undergraduates in mathematics and physics and is intended as the template for a one- or two-semester bachelor's course.

Differential Geometry and Topology

Author: R Caddeo

Publisher: World Scientific

ISBN:

Category:

Page: 276

View: 968

This volume contains the courses and lectures given during the workshop on Differential Geometry and Topology held at Alghero, Italy, in June 1992. The main goal of this meeting was to offer an introduction in attractive areas of current research and to discuss some recent important achievements in both the fields. This is reflected in the present book which contains some introductory texts together with more specialized contributions. The topics covered in this volume include circle and sphere packings, 3-manifolds invariants and combinatorial presentations of manifolds, soliton theory and its applications in differential geometry, G-manifolds of low cohomogeneity, exotic differentiable structures on R4, conformal deformation of Riemannian manifolds and Riemannian geometry of algebraic manifolds. Contents:Asystatic G-Manifolds (A Alekseevsky & D Alekseevsky)Les Paquets de Cercles (M Berger)Smooth Structures on Euclidean Spaces (S Demichelis)Surface Theory, Harmonic Maps and Commuting Hamiltonian Flows (D Ferus)Metric Invariants of Kähler Manifolds (M Gromov)On the Sphere Packing Problem and the Proof of Kepler's Conjecture (W Y Hsiang)A 3-Gem Approach to Turaev-Viro Invariants (S L S Lins)Cohomology Operations and Modular Invariant Theory (L Lomonaco)Scalar Curvature and Conformal Deformation of Riemannian Manifolds (A Ratto)Lectures on Combinatorial Presentations of Manifolds (O Viro) Readership: Mathematicians. keywords:

Differential Geometry and Topology of Curves

Author: Yu Animov

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 216

View: 796

Differential geometry is an actively developing area of modern mathematics. This volume presents a classical approach to the general topics of the geometry of curves, including the theory of curves in n-dimensional Euclidean space. The author investigates problems for special classes of curves and gives the working method used to obtain the conditions for closed polygonal curves. The proof of the Bakel-Werner theorem in conditions of boundedness for curves with periodic curvature and torsion is also presented. This volume also highlights the contributions made by great geometers. past and present, to differential geometry and the topology of curves.

Advances in Differential Geometry and Topology

Author: F Tricerri

Publisher: World Scientific

ISBN:

Category:

Page: 192

View: 399

The aim of this volume is to offer a set of high quality contributions on recent advances in Differential Geometry and Topology, with some emphasis on their application in physics. A broad range of themes is covered, including convex sets, Kaehler manifolds and moment map, combinatorial Morse theory and 3-manifolds, knot theory and statistical mechanics. Contents:Convex Sets and Kaehler Manifolds (M Gromov)Accessibilite En Geometrie Riemannienne Non-Holonome (T Hangan)Riemannian Manifolds with Homogeneous Geodesics (O Kowalski)Triangulations of Manifolds with Few Vertices (W Kühnel)Geometry and Symmetry (L Vanhecke)3-Manifolds and Orbifold Groups of Links (B Zimmermann)Knots, Braids, and Statistical Mechanics (V F R Jones) Readership: Pure mathematicians. keywords:Differential Geometry;Topology

A Brief Introduction to Topology and Differential Geometry in Condensed Matter Physics

Author: Antonio Sergio Teixeira Pires

Publisher: Morgan & Claypool Publishers

ISBN:

Category: Science

Page: 170

View: 252

In the last years there have been great advances in the applications of topology and differential geometry to problems in condensed matter physics. Concepts drawn from topology and geometry have become essential to the understanding of several phenomena in the area. Physicists have been creative in producing models for actual physical phenomena which realize mathematically exotic concepts and new phases have been discovered in condensed matter in which topology plays a leading role. An important classification paradigm is the concept of topological order, where the state characterizing a system does not break any symmetry, but it defines a topological phase in the sense that certain fundamental properties change only when the system passes through a quantum phase transition. The main purpose of this book is to provide a brief, self-contained introduction to some mathematical ideas and methods from differential geometry and topology, and to show a few applications in condensed matter. It conveys to physicists the basis for many mathematical concepts, avoiding the detailed formality of most textbooks.

Geometry and Topology of Submanifolds X

Author: W H Chen

Publisher: World Scientific

ISBN:

Category: Mathematics

Page: 360

View: 363

Contents:Progress in Affine Differential Geometry — Problem List and Continued Bibliography (T Binder & U Simon)On the Classification of Timelike Bonnet Surfaces (W H Chen & H Z Li)Affine Hyperspheres with Constant Affine Sectional Curvature (F Dillen et al.)Geometric Properties of the Curvature Operator (P Gilkey)On a Question of S S Chern Concerning Minimal Hypersurfaces of Spheres (I Hiric( & L Verstraelen)Parallel Pure Spinors on Pseudo-Riemannian Manifolds (I Kath)Twistorial Construction of Spacelike Surfaces in Lorentzian 4-Manifolds (F Leitner)Nirenberg's Problem in 90's (L Ma)A New Proof of the Homogeneity of Isoparametric Hypersurfaces with (g,m) = (6, 1) (R Miyaoka)Harmonic Maps and Negatively Curved Homogeneous Spaces (S Nishikawa)Biharmonic Morphisms Between Riemannian Manifolds (Y L Ou)Intrinsic Properties of Real Hypersurfaces in Complex Space Forms (P J Ryan)On the Nonexistence of Stable Minimal Submanifolds in Positively Pinched Riemannian Manifolds (Y B Shen & H Q Xu)Geodesic Mappings of the Ellipsoid (K Voss)η-Invariants and the Poincaré-Hopf Index Formula (W Zhang)and other papers Readership: Researchers in differential geometry and topology. Keywords:Conference;Proceedings;Berlin (Germany);Beijing (China);Geometry;Topology;Submanifolds X;Differential Geometry;Dedication

Selected Problems in Differential Geometry and Topology

Author: A. T. Fomenko

Publisher:

ISBN:

Category: Geometry, Differential

Page: 354

View: 171

This volume is intended as a supplementary text for a course on differential geometry and topology and other courses in mathematics, physics and mechanics for graduate students specializing in mathematics and applied fields. The volume is divided into two parts. Part I includes problems prescribed in standard courses of geometry and topology. Part II contains problems intended for a more profound grasp of modern geometry and its applications.