Data Mining with R

Learning with Case Studies, Second Edition

Author: Luis Torgo

Publisher: CRC Press

ISBN:

Category: Business & Economics

Page: 426

View: 317

Data Mining with R: Learning with Case Studies, Second Edition uses practical examples to illustrate the power of R and data mining. Providing an extensive update to the best-selling first edition, this new edition is divided into two parts. The first part will feature introductory material, including a new chapter that provides an introduction to data mining, to complement the already existing introduction to R. The second part includes case studies, and the new edition strongly revises the R code of the case studies making it more up-to-date with recent packages that have emerged in R. The book does not assume any prior knowledge about R. Readers who are new to R and data mining should be able to follow the case studies, and they are designed to be self-contained so the reader can start anywhere in the document. The book is accompanied by a set of freely available R source files that can be obtained at the book’s web site. These files include all the code used in the case studies, and they facilitate the "do-it-yourself" approach followed in the book. Designed for users of data analysis tools, as well as researchers and developers, the book should be useful for anyone interested in entering the "world" of R and data mining. About the Author Luís Torgo is an associate professor in the Department of Computer Science at the University of Porto in Portugal. He teaches Data Mining in R in the NYU Stern School of Business’ MS in Business Analytics program. An active researcher in machine learning and data mining for more than 20 years, Dr. Torgo is also a researcher in the Laboratory of Artificial Intelligence and Data Analysis (LIAAD) of INESC Porto LA.

Mastering Text Mining with R

Author: Ashish Kumar

Publisher: Packt Publishing Ltd

ISBN:

Category: Computers

Page: 258

View: 135

Master text-taming techniques and build effective text-processing applications with R About This Book Develop all the relevant skills for building text-mining apps with R with this easy-to-follow guide Gain in-depth understanding of the text mining process with lucid implementation in the R language Example-rich guide that lets you gain high-quality information from text data Who This Book Is For If you are an R programmer, analyst, or data scientist who wants to gain experience in performing text data mining and analytics with R, then this book is for you. Exposure to working with statistical methods and language processing would be helpful. What You Will Learn Get acquainted with some of the highly efficient R packages such as OpenNLP and RWeka to perform various steps in the text mining process Access and manipulate data from different sources such as JSON and HTTP Process text using regular expressions Get to know the different approaches of tagging texts, such as POS tagging, to get started with text analysis Explore different dimensionality reduction techniques, such as Principal Component Analysis (PCA), and understand its implementation in R Discover the underlying themes or topics that are present in an unstructured collection of documents, using common topic models such as Latent Dirichlet Allocation (LDA) Build a baseline sentence completing application Perform entity extraction and named entity recognition using R In Detail Text Mining (or text data mining or text analytics) is the process of extracting useful and high-quality information from text by devising patterns and trends. R provides an extensive ecosystem to mine text through its many frameworks and packages. Starting with basic information about the statistics concepts used in text mining, this book will teach you how to access, cleanse, and process text using the R language and will equip you with the tools and the associated knowledge about different tagging, chunking, and entailment approaches and their usage in natural language processing. Moving on, this book will teach you different dimensionality reduction techniques and their implementation in R. Next, we will cover pattern recognition in text data utilizing classification mechanisms, perform entity recognition, and develop an ontology learning framework. By the end of the book, you will develop a practical application from the concepts learned, and will understand how text mining can be leveraged to analyze the massively available data on social media. Style and approach This book takes a hands-on, example-driven approach to the text mining process with lucid implementation in R.

Educational Data Mining with R and Rattle

Author: R. S. Kamath

Publisher: River Publishers

ISBN:

Category: Computers

Page: 128

View: 460

Educational Data Mining (EDM) is one of the emerging fields in the pedagogy and andragogy paradigm, it concerns the techniques which research data coming from the educational domain. EDM is a promising discipline which has an imperative impact on predicting students? academic performance. It includes the transformation of existing, and the innovation of new approaches derived from multidisciplinary spheres of influence such as statistics, machine learning, psychometrics, scientific computing etc. An archetype that is covered in this book is that of learning by example. The intention is that reader will easily be able to replicate the given examples and then adapt them to suit their own needs of teaching-learning. The content of the book is based on the research work undertaken by the authors on the theme ?Mining of Educational Data for the Analysis and Prediction of Students? Academic Performance?. The basic know-how presented in this book can be treated as guide for educational data mining implementation using R and Rattle open source data mining tools. Technical topics discussed in the book include: 1- Emerging Research Directions in Educational Data Mining 2- Design Aspects and Developmental Framework of the System 3- Model Development - Building Classifiers 4- Educational Data Analysis: Clustering Approach

Learning Data Mining with R

Author: Bater Makhabel

Publisher: Packt Publishing Ltd

ISBN:

Category: Computers

Page: 314

View: 295

This book is intended for the budding data scientist or quantitative analyst with only a basic exposure to R and statistics. This book assumes familiarity with only the very basics of R, such as the main data types, simple functions, and how to move data around. No prior experience with data mining packages is necessary; however, you should have a basic understanding of data mining concepts and processes.

Social Media Mining with R

Author: Nathan Danneman

Publisher: Packt Publishing Ltd

ISBN:

Category: Computers

Page: 122

View: 198

A concise, hands-on guide with many practical examples and a detailed treatise on inference and social science research that will help you in mining data in the real world. Whether you are an undergraduate who wishes to get hands-on experience working with social data from the Web, a practitioner wishing to expand your competencies and learn unsupervised sentiment analysis, or you are simply interested in social data analysis, this book will prove to be an essential asset. No previous experience with R or statistics is required, though having knowledge of both will enrich your experience.

Data Mining with Rattle and R

The Art of Excavating Data for Knowledge Discovery

Author: Graham Williams

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 374

View: 538

Data mining is the art and science of intelligent data analysis. By building knowledge from information, data mining adds considerable value to the ever increasing stores of electronic data that abound today. In performing data mining many decisions need to be made regarding the choice of methodology, the choice of data, the choice of tools, and the choice of algorithms. Throughout this book the reader is introduced to the basic concepts and some of the more popular algorithms of data mining. With a focus on the hands-on end-to-end process for data mining, Williams guides the reader through various capabilities of the easy to use, free, and open source Rattle Data Mining Software built on the sophisticated R Statistical Software. The focus on doing data mining rather than just reading about data mining is refreshing. The book covers data understanding, data preparation, data refinement, model building, model evaluation, and practical deployment. The reader will learn to rapidly deliver a data mining project using software easily installed for free from the Internet. Coupling Rattle with R delivers a very sophisticated data mining environment with all the power, and more, of the many commercial offerings.

Learning Data Mining with R

Author: Romeo Kienzler

Publisher:

ISBN:

Category:

Page:

View: 558

"Data mining is a growing demand on the market as the world is generating data at an increasing pace. R is a popular programming language for statistics. It can be used for day-to-day data analysis tasks. Data mining is a very broad topic and takes some time to learn. This course will help you to understand the mathematical basics quickly, and then you can directly apply what you've learned in R. This course covers each and every aspect of data mining in order to prepare you for real-world problems. You'll come to understand the different disciplines in data mining. In every discipline, there exist a variety of different algorithms. At least one algorithm of the various classes of algorithms will be covered to give you a foundation to further apply your knowledge to dive deeper into the different flavors of algorithms. After completing this course, you will be able to solve real-world data mining problems."--Resource description page.

Data Mining Applications with R

Author: Yanchang Zhao

Publisher: Academic Press

ISBN:

Category: Computers

Page: 514

View: 516

Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. This book presents 15 different real-world case studies illustrating various techniques in rapidly growing areas. It is an ideal companion for data mining researchers in academia and industry looking for ways to turn this versatile software into a powerful analytic tool. R code, Data and color figures for the book are provided at the RDataMining.com website. Helps data miners to learn to use R in their specific area of work and see how R can apply in different industries Presents various case studies in real-world applications, which will help readers to apply the techniques in their work Provides code examples and sample data for readers to easily learn the techniques by running the code by themselves

Learning Path

R : Real-world Data Mining with R.

Author:

Publisher:

ISBN:

Category:

Page:

View: 620

"Data mining is a growing demand on the market as the world is generating data at an increasing pace. R is a popular programming language for statistics. It can be used for day-to-day data analysis tasks. This Learning Path is the complete learning process for data-happy people. We begin with a thorough introduction to data mining and how R makes it easy with its many packages. We then move on to exploring data mining techniques, showing you how to apply different mining concepts to various statistical and data applications in a wide range of fields using R's vast set of algorithms. Discover the versatility of R for data mining with the collection of analysis techniques in this Learning Path."--Resource description page.