CUDA by Example

An Introduction to General-Purpose GPU Programming, Portable Documents

Author: Jason Sanders

Publisher: Addison-Wesley Professional

ISBN:

Category: Computers

Page: 312

View: 208

CUDA is a computing architecture designed to facilitate the development of parallel programs. In conjunction with a comprehensive software platform, the CUDA Architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demanding graphics and game applications. CUDA now brings this valuable resource to programmers working on applications in other domains, including science, engineering, and finance. No knowledge of graphics programming is required—just the ability to program in a modestly extended version of C. CUDA by Example, written by two senior members of the CUDA software platform team, shows programmers how to employ this new technology. The authors introduce each area of CUDA development through working examples. After a concise introduction to the CUDA platform and architecture, as well as a quick-start guide to CUDA C, the book details the techniques and trade-offs associated with each key CUDA feature. You’ll discover when to use each CUDA C extension and how to write CUDA software that delivers truly outstanding performance. Major topics covered include Parallel programming Thread cooperation Constant memory and events Texture memory Graphics interoperability Atomics Streams CUDA C on multiple GPUs Advanced atomics Additional CUDA resources All the CUDA software tools you’ll need are freely available for download from NVIDIA. http://developer.nvidia.com/object/cuda-by-example.html

Cuda By Example

An Introduction To General-Purpose Gpu Programming

Author: Edward Kandrot

Publisher:

ISBN:

Category: Application software

Page: 290

View: 823

CUDA is a computing architecture designed to facilitate the development of parallel programs. This book shows programmers how to employ this new technology. Each area of CUDA development is introduced through working examples. After a concise introduction to the CUDA platform and architecture, as well as a quick-start guide to CUDA C, the book details the techniques and trade-offs associated with each key CUDA feature.--[book cover].

Professional CUDA C Programming

Author: John Cheng

Publisher: John Wiley & Sons

ISBN:

Category: Computers

Page: 528

View: 439

Break into the powerful world of parallel GPU programming with this down-to-earth, practical guide Designed for professionals across multiple industrial sectors, Professional CUDA C Programming presents CUDA -- a parallel computing platform and programming model designed to ease the development of GPU programming -- fundamentals in an easy-to-follow format, and teaches readers how to think in parallel and implement parallel algorithms on GPUs. Each chapter covers a specific topic, and includes workable examples that demonstrate the development process, allowing readers to explore both the "hard" and "soft" aspects of GPU programming. Computing architectures are experiencing a fundamental shift toward scalable parallel computing motivated by application requirements in industry and science. This book demonstrates the challenges of efficiently utilizing compute resources at peak performance, presents modern techniques for tackling these challenges, while increasing accessibility for professionals who are not necessarily parallel programming experts. The CUDA programming model and tools empower developers to write high-performance applications on a scalable, parallel computing platform: the GPU. However, CUDA itself can be difficult to learn without extensive programming experience. Recognized CUDA authorities John Cheng, Max Grossman, and Ty McKercher guide readers through essential GPU programming skills and best practices in Professional CUDA C Programming, including: CUDA Programming Model GPU Execution Model GPU Memory model Streams, Event and Concurrency Multi-GPU Programming CUDA Domain-Specific Libraries Profiling and Performance Tuning The book makes complex CUDA concepts easy to understand for anyone with knowledge of basic software development with exercises designed to be both readable and high-performance. For the professional seeking entrance to parallel computing and the high-performance computing community, Professional CUDA C Programming is an invaluable resource, with the most current information available on the market.

The CUDA Handbook

A Comprehensive Guide to GPU Programming

Author: Nicholas Wilt

Publisher: Addison-Wesley

ISBN:

Category: Computers

Page: 528

View: 809

The CUDA Handbook begins where CUDA by Example (Addison-Wesley, 2011) leaves off, discussing CUDA hardware and software in greater detail and covering both CUDA 5.0 and Kepler. Every CUDA developer, from the casual to the most sophisticated, will find something here of interest and immediate usefulness. Newer CUDA developers will see how the hardware processes commands and how the driver checks progress; more experienced CUDA developers will appreciate the expert coverage of topics such as the driver API and context migration, as well as the guidance on how best to structure CPU/GPU data interchange and synchronization. The accompanying open source code–more than 25,000 lines of it, freely available at www.cudahandbook.com–is specifically intended to be reused and repurposed by developers. Designed to be both a comprehensive reference and a practical cookbook, the text is divided into the following three parts: Part I, Overview, gives high-level descriptions of the hardware and software that make CUDA possible. Part II, Details, provides thorough descriptions of every aspect of CUDA, including Memory Streams and events Models of execution, including the dynamic parallelism feature, new with CUDA 5.0 and SM 3.5 The streaming multiprocessors, including descriptions of all features through SM 3.5 Programming multiple GPUs Texturing The source code accompanying Part II is presented as reusable microbenchmarks and microdemos, designed to expose specific hardware characteristics or highlight specific use cases. Part III, Select Applications, details specific families of CUDA applications and key parallel algorithms, including Streaming workloads Reduction Parallel prefix sum (Scan) N-body Image Processing These algorithms cover the full range of potential CUDA applications.

Cuda By Example

Author: Jason Sanders

Publisher:

ISBN:

Category:

Page: 313

View: 249

"This book is required reading for anyone working with accelerator-based computing systems."--The Foreword by Jack Dongarra, University of Tennessee and Oak Ridge National Laboratory CUDA is a computing architecture designed to facilitate the development of parallel programs. In conjunction with a comprehensive software platform, the CUDA Architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demanding graphics and game applications. CUDA now brings t.

Cuda for Engineers: An Introduction to High-Performance Parallel Computing

Author: Duane Storti

Publisher: Addison-Wesley Professional

ISBN:

Category: Computers

Page: 352

View: 385

Extremely low-cost graphics cards now possess computational capabilities that were once limited to supercomputers. Using CUDA, you can to liberate the power of NVIDIA graphics cards for a wide spectrum of non-graphics applications. CUDA for Engineers is the first guide specifically focused on using CUDA to write high-performance engineering and scientific applications. Ideal for any scientist, engineer, or student with at least introductory programming experience, this tutorial presents examples and reusable C code to jumpstart a wide variety of applications. You'll walk through moving from serial to parallel computation; computing values of a function in parallel; understanding 2D parallelism; simulating dynamics in the phase plane; simulating heat conduction; interacting with 3D data; walking through a basic N-body simulation, and more. Written by a working engineer, this comfortable and conversational guide focuses on practical knowledge you need to solve real engineering and scientific problems with CUDA - at a small fraction of what it would have cost just a few years ago.

CUDA for Engineers

An Introduction to High-Performance Parallel Computing

Author: Duane Storti

Publisher: Addison-Wesley Professional

ISBN:

Category: Computers

Page: 352

View: 591

CUDA for Engineers gives you direct, hands-on engagement with personal, high-performance parallel computing, enabling you to do computations on a gaming-level PC that would have required a supercomputer just a few years ago. The authors introduce the essentials of CUDA C programming clearly and concisely, quickly guiding you from running sample programs to building your own code. Throughout, you’ll learn from complete examples you can build, run, and modify, complemented by additional projects that deepen your understanding. All projects are fully developed, with detailed building instructions for all major platforms. Ideal for any scientist, engineer, or student with at least introductory programming experience, this guide assumes no specialized background in GPU-based or parallel computing. In an appendix, the authors also present a refresher on C programming for those who need it. Coverage includes Preparing your computer to run CUDA programs Understanding CUDA’s parallelism model and C extensions Transferring data between CPU and GPU Managing timing, profiling, error handling, and debugging Creating 2D grids Interoperating with OpenGL to provide real-time user interactivity Performing basic simulations with differential equations Using stencils to manage related computations across threads Exploiting CUDA’s shared memory capability to enhance performance Interacting with 3D data: slicing, volume rendering, and ray casting Using CUDA libraries Finding more CUDA resources and code Realistic example applications include Visualizing functions in 2D and 3D Solving differential equations while changing initial or boundary conditions Viewing/processing images or image stacks Computing inner products and centroids Solving systems of linear algebraic equations Monte-Carlo computations

CUDA Programming

A Developer's Guide to Parallel Computing with GPUs

Author: Shane Cook

Publisher: Newnes

ISBN:

Category: Computers

Page: 576

View: 574

If you need to learn CUDA but don't have experience with parallel computing, CUDA Programming: A Developer's Introduction offers a detailed guide to CUDA with a grounding in parallel fundamentals. It starts by introducing CUDA and bringing you up to speed on GPU parallelism and hardware, then delving into CUDA installation. Chapters on core concepts including threads, blocks, grids, and memory focus on both parallel and CUDA-specific issues. Later, the book demonstrates CUDA in practice for optimizing applications, adjusting to new hardware, and solving common problems. Comprehensive introduction to parallel programming with CUDA, for readers new to both Detailed instructions help readers optimize the CUDA software development kit Practical techniques illustrate working with memory, threads, algorithms, resources, and more Covers CUDA on multiple hardware platforms: Mac, Linux and Windows with several NVIDIA chipsets Each chapter includes exercises to test reader knowledge

Professional CUDA C Programming

Author: John Cheng

Publisher: John Wiley & Sons

ISBN:

Category: Computers

Page: 528

View: 467

Break into the powerful world of parallel GPU programming with this down-to-earth, practical guide Designed for professionals across multiple industrial sectors, Professional CUDA C Programming presents CUDA -- a parallel computing platform and programming model designed to ease the development of GPU programming -- fundamentals in an easy-to-follow format, and teaches readers how to think in parallel and implement parallel algorithms on GPUs. Each chapter covers a specific topic, and includes workable examples that demonstrate the development process, allowing readers to explore both the "hard" and "soft" aspects of GPU programming. Computing architectures are experiencing a fundamental shift toward scalable parallel computing motivated by application requirements in industry and science. This book demonstrates the challenges of efficiently utilizing compute resources at peak performance, presents modern techniques for tackling these challenges, while increasing accessibility for professionals who are not necessarily parallel programming experts. The CUDA programming model and tools empower developers to write high-performance applications on a scalable, parallel computing platform: the GPU. However, CUDA itself can be difficult to learn without extensive programming experience. Recognized CUDA authorities John Cheng, Max Grossman, and Ty McKercher guide readers through essential GPU programming skills and best practices in Professional CUDA C Programming, including: CUDA Programming Model GPU Execution Model GPU Memory model Streams, Event and Concurrency Multi-GPU Programming CUDA Domain-Specific Libraries Profiling and Performance Tuning The book makes complex CUDA concepts easy to understand for anyone with knowledge of basic software development with exercises designed to be both readable and high-performance. For the professional seeking entrance to parallel computing and the high-performance computing community, Professional CUDA C Programming is an invaluable resource, with the most current information available on the market.

Hands-On GPU Programming with Python and CUDA

Explore high-performance parallel computing with CUDA

Author: Dr. Brian Tuomanen

Publisher: Packt Publishing Ltd

ISBN:

Category: Computers

Page: 310

View: 299

Build real-world applications with Python 2.7, CUDA 9, and CUDA 10. We suggest the use of Python 2.7 over Python 3.x, since Python 2.7 has stable support across all the libraries we use in this book. Key Features Expand your background in GPU programming—PyCUDA, scikit-cuda, and Nsight Effectively use CUDA libraries such as cuBLAS, cuFFT, and cuSolver Apply GPU programming to modern data science applications Book Description Hands-On GPU Programming with Python and CUDA hits the ground running: you’ll start by learning how to apply Amdahl’s Law, use a code profiler to identify bottlenecks in your Python code, and set up an appropriate GPU programming environment. You’ll then see how to “query” the GPU’s features and copy arrays of data to and from the GPU’s own memory. As you make your way through the book, you’ll launch code directly onto the GPU and write full blown GPU kernels and device functions in CUDA C. You’ll get to grips with profiling GPU code effectively and fully test and debug your code using Nsight IDE. Next, you’ll explore some of the more well-known NVIDIA libraries, such as cuFFT and cuBLAS. With a solid background in place, you will now apply your new-found knowledge to develop your very own GPU-based deep neural network from scratch. You’ll then explore advanced topics, such as warp shuffling, dynamic parallelism, and PTX assembly. In the final chapter, you’ll see some topics and applications related to GPU programming that you may wish to pursue, including AI, graphics, and blockchain. By the end of this book, you will be able to apply GPU programming to problems related to data science and high-performance computing. What you will learn Launch GPU code directly from Python Write effective and efficient GPU kernels and device functions Use libraries such as cuFFT, cuBLAS, and cuSolver Debug and profile your code with Nsight and Visual Profiler Apply GPU programming to datascience problems Build a GPU-based deep neuralnetwork from scratch Explore advanced GPU hardware features, such as warp shuffling Who this book is for Hands-On GPU Programming with Python and CUDA is for developers and data scientists who want to learn the basics of effective GPU programming to improve performance using Python code. You should have an understanding of first-year college or university-level engineering mathematics and physics, and have some experience with Python as well as in any C-based programming language such as C, C++, Go, or Java.

Deep Learning with JavaScript

Neural networks in TensorFlow.js

Author: Stanley Bileschi

Publisher: Simon and Schuster

ISBN:

Category: Computers

Page: 560

View: 392

Summary Deep learning has transformed the fields of computer vision, image processing, and natural language applications. Thanks to TensorFlow.js, now JavaScript developers can build deep learning apps without relying on Python or R. Deep Learning with JavaScript shows developers how they can bring DL technology to the web. Written by the main authors of the TensorFlow library, this new book provides fascinating use cases and in-depth instruction for deep learning apps in JavaScript in your browser or on Node. Foreword by Nikhil Thorat and Daniel Smilkov. About the technology Running deep learning applications in the browser or on Node-based backends opens up exciting possibilities for smart web applications. With the TensorFlow.js library, you build and train deep learning models with JavaScript. Offering uncompromising production-quality scalability, modularity, and responsiveness, TensorFlow.js really shines for its portability. Its models run anywhere JavaScript runs, pushing ML farther up the application stack. About the book In Deep Learning with JavaScript, you’ll learn to use TensorFlow.js to build deep learning models that run directly in the browser. This fast-paced book, written by Google engineers, is practical, engaging, and easy to follow. Through diverse examples featuring text analysis, speech processing, image recognition, and self-learning game AI, you’ll master all the basics of deep learning and explore advanced concepts, like retraining existing models for transfer learning and image generation. What's inside - Image and language processing in the browser - Tuning ML models with client-side data - Text and image creation with generative deep learning - Source code samples to test and modify About the reader For JavaScript programmers interested in deep learning. About the author Shanging Cai, Stanley Bileschi and Eric D. Nielsen are software engineers with experience on the Google Brain team, and were crucial to the development of the high-level API of TensorFlow.js. This book is based in part on the classic, Deep Learning with Python by François Chollet. TOC: PART 1 - MOTIVATION AND BASIC CONCEPTS 1 • Deep learning and JavaScript PART 2 - A GENTLE INTRODUCTION TO TENSORFLOW.JS 2 • Getting started: Simple linear regression in TensorFlow.js 3 • Adding nonlinearity: Beyond weighted sums 4 • Recognizing images and sounds using convnets 5 • Transfer learning: Reusing pretrained neural networks PART 3 - ADVANCED DEEP LEARNING WITH TENSORFLOW.JS 6 • Working with data 7 • Visualizing data and models 8 • Underfitting, overfitting, and the universal workflow of machine learning 9 • Deep learning for sequences and text 10 • Generative deep learning 11 • Basics of deep reinforcement learning PART 4 - SUMMARY AND CLOSING WORDS 12 • Testing, optimizing, and deploying models 13 • Summary, conclusions, and beyond

The Lattice Boltzmann Method

Principles and Practice

Author: Timm Krüger

Publisher: Springer

ISBN:

Category: Science

Page: 694

View: 333

This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.

Implementing an IBM High-Performance Computing Solution on IBM POWER8

Author: Dino Quintero

Publisher: IBM Redbooks

ISBN:

Category: Computers

Page: 310

View: 674

This IBM® Redbooks® publication documents and addresses topics to provide step-by-step programming concepts to tune the applications to use IBM POWER8® hardware architecture with the technical computing software stack. This publication explores, tests, and documents how to implement an IBM high-performance computing (HPC) solution on POWER8 by using IBM technical innovations to help solve challenging scientific, technical, and business problems. This book demonstrates and documents that the combination of IBM HPC hardware and software solutions delivers significant value to technical computing clients in need of cost-effective, highly scalable, and robust solutions. This book targets technical professionals (consultants, technical support staff, IT Architects, and IT Specialists) who are responsible for delivering cost-effective HPC solutions that help uncover insights among clients' data so that they can act to optimize business results, product development, and scientific discoveries.

Parallel and High Performance Computing

Author: Robert Robey

Publisher: Simon and Schuster

ISBN:

Category: Computers

Page: 704

View: 137

Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code

Designing Scientific Applications on GPUs

Author: Raphael Couturier

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 498

View: 704

Many of today’s complex scientific applications now require a vast amount of computational power. General purpose graphics processing units (GPGPUs) enable researchers in a variety of fields to benefit from the computational power of all the cores available inside graphics cards. Understand the Benefits of Using GPUs for Many Scientific Applications Designing Scientific Applications on GPUs shows you how to use GPUs for applications in diverse scientific fields, from physics and mathematics to computer science. The book explains the methods necessary for designing or porting your scientific application on GPUs. It will improve your knowledge about image processing, numerical applications, methodology to design efficient applications, optimization methods, and much more. Everything You Need to Design/Port Your Scientific Application on GPUs The first part of the book introduces the GPUs and Nvidia’s CUDA programming model, currently the most widespread environment for designing GPU applications. The second part focuses on significant image processing applications on GPUs. The third part presents general methodologies for software development on GPUs and the fourth part describes the use of GPUs for addressing several optimization problems. The fifth part covers many numerical applications, including obstacle problems, fluid simulation, and atomic physics models. The last part illustrates agent-based simulations, pseudorandom number generation, and the solution of large sparse linear systems for integer factorization. Some of the codes presented in the book are available online.

Hands-On GPU-Accelerated Computer Vision with OpenCV and CUDA

Effective techniques for processing complex image data in real time using GPUs

Author: Bhaumik Vaidya

Publisher: Packt Publishing Ltd

ISBN:

Category: Computers

Page: 380

View: 972

Discover how CUDA allows OpenCV to handle complex and rapidly growing image data processing in computer and machine vision by accessing the power of GPU Key Features Explore examples to leverage the GPU processing power with OpenCV and CUDA Enhance the performance of algorithms on embedded hardware platforms Discover C++ and Python libraries for GPU acceleration Book Description Computer vision has been revolutionizing a wide range of industries, and OpenCV is the most widely chosen tool for computer vision with its ability to work in multiple programming languages. Nowadays, in computer vision, there is a need to process large images in real time, which is difficult to handle for OpenCV on its own. This is where CUDA comes into the picture, allowing OpenCV to leverage powerful NVDIA GPUs. This book provides a detailed overview of integrating OpenCV with CUDA for practical applications. To start with, you’ll understand GPU programming with CUDA, an essential aspect for computer vision developers who have never worked with GPUs. You’ll then move on to exploring OpenCV acceleration with GPUs and CUDA by walking through some practical examples. Once you have got to grips with the core concepts, you’ll familiarize yourself with deploying OpenCV applications on NVIDIA Jetson TX1, which is popular for computer vision and deep learning applications. The last chapters of the book explain PyCUDA, a Python library that leverages the power of CUDA and GPUs for accelerations and can be used by computer vision developers who use OpenCV with Python. By the end of this book, you’ll have enhanced computer vision applications with the help of this book's hands-on approach. What you will learn Understand how to access GPU device properties and capabilities from CUDA programs Learn how to accelerate searching and sorting algorithms Detect shapes such as lines and circles in images Explore object tracking and detection with algorithms Process videos using different video analysis techniques in Jetson TX1 Access GPU device properties from the PyCUDA program Understand how kernel execution works Who this book is for This book is a go-to guide for you if you are a developer working with OpenCV and want to learn how to process more complex image data by exploiting GPU processing. A thorough understanding of computer vision concepts and programming languages such as C++ or Python is expected.

CUDA Application Design and Development

Author: Rob Farber

Publisher: Elsevier

ISBN:

Category: Computers

Page: 315

View: 983

Machine generated contents note: 1. How to think in CUDA 2. Tools to build, debug and profile 3. The GPU performance envelope 4. The CUDA memory subsystems 5. Exploiting the CUDA execution grid 6. MultiGPU applications and scaling 7. Numerical CUDA, libraries and high-level language bindings 8. Mixing CUDA with rendering 9. High Performance Machine Learning 10. Scientific Visualization 11. Multimedia with OpenCV 12. Ultra Low-power Devices: Tegra.

Hands-On Generative Adversarial Networks with PyTorch 1.x

Implement next-generation neural networks to build powerful GAN models using Python

Author: John Hany

Publisher: Packt Publishing Ltd

ISBN:

Category: Computers

Page: 312

View: 801

Apply deep learning techniques and neural network methodologies to build, train, and optimize generative network models Key Features Implement GAN architectures to generate images, text, audio, 3D models, and more Understand how GANs work and become an active contributor in the open source community Learn how to generate photo-realistic images based on text descriptions Book Description With continuously evolving research and development, Generative Adversarial Networks (GANs) are the next big thing in the field of deep learning. This book highlights the key improvements in GANs over generative models and guides in making the best out of GANs with the help of hands-on examples. This book starts by taking you through the core concepts necessary to understand how each component of a GAN model works. You'll build your first GAN model to understand how generator and discriminator networks function. As you advance, you'll delve into a range of examples and datasets to build a variety of GAN networks using PyTorch functionalities and services, and become well-versed with architectures, training strategies, and evaluation methods for image generation, translation, and restoration. You'll even learn how to apply GAN models to solve problems in areas such as computer vision, multimedia, 3D models, and natural language processing (NLP). The book covers how to overcome the challenges faced while building generative models from scratch. Finally, you'll also discover how to train your GAN models to generate adversarial examples to attack other CNN and GAN models. By the end of this book, you will have learned how to build, train, and optimize next-generation GAN models and use them to solve a variety of real-world problems. What you will learn Implement PyTorch's latest features to ensure efficient model designing Get to grips with the working mechanisms of GAN models Perform style transfer between unpaired image collections with CycleGAN Build and train 3D-GANs to generate a point cloud of 3D objects Create a range of GAN models to perform various image synthesis operations Use SEGAN to suppress noise and improve the quality of speech audio Who this book is for This GAN book is for machine learning practitioners and deep learning researchers looking to get hands-on guidance in implementing GAN models using PyTorch. You’ll become familiar with state-of-the-art GAN architectures with the help of real-world examples. Working knowledge of Python programming language is necessary to grasp the concepts covered in this book.