Complex Geometry

An Introduction

Author: Daniel Huybrechts

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 309

View: 324

Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)

Holomorphic Dynamical Systems

Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, July 7-12, 2008

Author: Nessim Sibony

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 348

View: 729

The theory of holomorphic dynamical systems is a subject of increasing interest in mathematics, both for its challenging problems and for its connections with other branches of pure and applied mathematics. A holomorphic dynamical system is the datum of a complex variety and a holomorphic object (such as a self-map or a vector ?eld) acting on it. The study of a holomorphic dynamical system consists in describing the asymptotic behavior of the system, associating it with some invariant objects (easy to compute) which describe the dynamics and classify the possible holomorphic dynamical systems supported by a given manifold. The behavior of a holomorphic dynamical system is pretty much related to the geometry of the ambient manifold (for instance, - perbolic manifolds do no admit chaotic behavior, while projective manifolds have a variety of different chaotic pictures). The techniques used to tackle such pr- lems are of variouskinds: complexanalysis, methodsof real analysis, pluripotential theory, algebraic geometry, differential geometry, topology. To cover all the possible points of view of the subject in a unique occasion has become almost impossible, and the CIME session in Cetraro on Holomorphic Dynamical Systems was not an exception.

A Brief Introduction to Berezin–Toeplitz Operators on Compact Kähler Manifolds

Author: Yohann Le Floch

Publisher: Springer

ISBN:

Category: Mathematics

Page: 140

View: 654

This text provides a comprehensive introduction to Berezin–Toeplitz operators on compact Kähler manifolds. The heart of the book is devoted to a proof of the main properties of these operators which have been playing a significant role in various areas of mathematics such as complex geometry, topological quantum field theory, integrable systems, and the study of links between symplectic topology and quantum mechanics. The book is carefully designed to supply graduate students with a unique accessibility to the subject. The first part contains a review of relevant material from complex geometry. Examples are presented with explicit detail and computation; prerequisites have been kept to a minimum. Readers are encouraged to enhance their understanding of the material by working through the many straightforward exercises.

Toeplitz Operators on Kähler Manifolds

Examples

Author: Tatyana Barron

Publisher: Springer

ISBN:

Category: Mathematics

Page: 84

View: 717

The purpose of this Brief is to give a quick practical introduction into the subject of Toeplitz operators on Kähler manifolds, via examples, worked out carefully and in detail. Necessary background is included. Several theorems on asymptotics of Toeplitz operators are reviewed and illustrated by examples, including the case of tori and the 2-dimensional sphere. Applications in the context of multisymplectic and hyperkähler geometry are discussed. The book is suitable for graduate students, advanced undergraduate students, and any researchers.

Calabi-Yau Varieties: Arithmetic, Geometry and Physics

Lecture Notes on Concentrated Graduate Courses

Author: Radu Laza

Publisher: Springer

ISBN:

Category: Mathematics

Page: 547

View: 563

This volume presents a lively introduction to the rapidly developing and vast research areas surrounding Calabi–Yau varieties and string theory. With its coverage of the various perspectives of a wide area of topics such as Hodge theory, Gross–Siebert program, moduli problems, toric approach, and arithmetic aspects, the book gives a comprehensive overview of the current streams of mathematical research in the area. The contributions in this book are based on lectures that took place during workshops with the following thematic titles: “Modular Forms Around String Theory,” “Enumerative Geometry and Calabi–Yau Varieties,” “Physics Around Mirror Symmetry,” “Hodge Theory in String Theory.” The book is ideal for graduate students and researchers learning about Calabi–Yau varieties as well as physics students and string theorists who wish to learn the mathematics behind these varieties.

Complex Manifolds without Potential Theory

with an appendix on the geometry of characteristic classes

Author: Shiing-shen Chern

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 154

View: 936

From the reviews of the second edition: "The new methods of complex manifold theory are very useful tools for investigations in algebraic geometry, complex function theory, differential operators and so on. The differential geometrical methods of this theory were developed essentially under the influence of Professor S.-S. Chern's works. The present book is a second edition... It can serve as an introduction to, and a survey of, this theory and is based on the author's lectures held at the University of California and at a summer seminar of the Canadian Mathematical Congress.... The text is illustrated by many examples... The book is warmly recommended to everyone interested in complex differential geometry." #Acta Scientiarum Mathematicarum, 41, 3-4#

An Algebraic Introduction to Complex Projective Geometry

Commutative Algebra

Author: Christian Peskine

Publisher: Cambridge University Press

ISBN:

Category: Mathematics

Page: 244

View: 136

In this introduction to commutative algebra, the author choses a route that leads the reader through the essential ideas, without getting embroiled in technicalities. He takes the reader quickly to the fundamentals of complex projective geometry, requiring only a basic knowledge of linear and multilinear algebra and some elementary group theory. The author divides the book into three parts. In the first, he develops the general theory of noetherian rings and modules. He includes a certain amount of homological algebra, and he emphasizes rings and modules of fractions as preparation for working with sheaves. In the second part, he discusses polynomial rings in several variables with coefficients in the field of complex numbers. After Noether's normalization lemma and Hilbert's Nullstellensatz, the author introduces affine complex schemes and their morphisms; he then proves Zariski's main theorem and Chevalley's semi-continuity theorem. Finally, the author's detailed study of Weil and Cartier divisors provides a solid background for modern intersection theory. This is an excellent textbook for those who seek an efficient and rapid introduction to the geometric applications of commutative algebra.

Canonical Metrics in Kähler Geometry

Author: Gang Tian

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 101

View: 571

There has been fundamental progress in complex differential geometry in the last two decades. For one, The uniformization theory of canonical Kähler metrics has been established in higher dimensions, and many applications have been found, including the use of Calabi-Yau spaces in superstring theory. This monograph gives an introduction to the theory of canonical Kähler metrics on complex manifolds. It also presents some advanced topics not easily found elsewhere.

Isomonodromic Deformations and Frobenius Manifolds

An Introduction

Author: Claude Sabbah

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 279

View: 544

Based on a series of graduate lectures, this book provides an introduction to algebraic geometric methods in the theory of complex linear differential equations. Starting from basic notions in complex algebraic geometry, it develops some of the classical problems of linear differential equations. It ends with applications to recent research questions related to mirror symmetry. The fundamental tool used is that of a vector bundle with connection. The book includes complete proofs, and applications to recent research questions. Aimed at graduate students and researchers, the book assumes some familiarity with basic complex algebraic geometry.