**Author**: T. Bröcker

**Publisher:** Springer Science & Business Media

**ISBN:**

**Category:** Mathematics

**Page:** 316

**View:** 737

This introduction to the representation theory of compact Lie groups follows Herman Weyl’s original approach. It discusses all aspects of finite-dimensional Lie theory, consistently emphasizing the groups themselves. Thus, the presentation is more geometric and analytic than algebraic. It is a useful reference and a source of explicit computations. Each section contains a range of exercises, and 24 figures help illustrate geometric concepts.

Blending algebra, analysis, and topology, the study of compact Lie groups is one of the most beautiful areas of mathematics and a key stepping stone to the theory of general Lie groups. Assuming no prior knowledge of Lie groups, this book covers the structure and representation theory of compact Lie groups. Coverage includes the construction of the Spin groups, Schur Orthogonality, the Peter-Weyl Theorem, the Plancherel Theorem, the Maximal Torus Theorem, the Commutator Theorem, the Weyl Integration and Character Formulas, the Highest Weight Classification, and the Borel-Weil Theorem. The book develops the necessary Lie algebra theory with a streamlined approach focusing on linear Lie groups.

Probability theory on compact Lie groups deals with the interaction between “chance” and “symmetry,” a beautiful area of mathematics of great interest in its own sake but which is now also finding increasing applications in statistics and engineering (particularly with respect to signal processing). The author gives a comprehensive introduction to some of the principle areas of study, with an emphasis on applicability. The most important topics presented are: the study of measures via the non-commutative Fourier transform, existence and regularity of densities, properties of random walks and convolution semigroups of measures and the statistical problem of deconvolution. The emphasis on compact (rather than general) Lie groups helps readers to get acquainted with what is widely seen as a difficult field but which is also justified by the wealth of interesting results at this level and the importance of these groups for applications. The book is primarily aimed at researchers working in probability, stochastic analysis and harmonic analysis on groups. It will also be of interest to mathematicians working in Lie theory and physicists, statisticians and engineers who are working on related applications. A background in first year graduate level measure theoretic probability and functional analysis is essential; a background in Lie groups and representation theory is certainly helpful but the first two chapters also offer orientation in these subjects.

There are two approaches to compact lie groups: by computation as matrices or theoretically as manifolds with a group structure. The great appeal of this book is the blending of these two approaches. The theoretical results are illustrated by computations and the theory provides a commentary on the computational work. Indeed, there are extensive computations of the structure and representation theory for the classical groups SU(n), SO(n) and Sp(n). A second exciting feature is that the differential geometry of a compact Lie group, both the classical curvature studies and the more recent heat equation methods, are treated. A large number of formulas for the connection and curvature are conveniently gathered together. This book provides an excellent text for a first course in compact Lie groups. Request Inspection Copy

We describe the components of the moduli space of conjugacy classes of commuting pairs and triples of elements in a compact Lie group. This description is in te' of the extended Dynkin diagram of the simply connected cover, together with the coroot integers and the action of the fundamental group. In the case of three commuting elements, we compute Chern-Simons invariants associated to the corresponding flat bundles over the three-torus, and verify a conjecture of Witten which reveals a surprising symmetry involving the Chern-Simons invariants and the dimensions of the components of the moduli space.

This work comprises a general study of symmetry breaking for compact Lie groups in the context of equivariant bifurcation theory. The author starts by extending the theory developed by Field and Richardson for absolutely irreducible representations of finite groups to general irreducible representations of compact Lie groups. In particular, the author allows for branches of relative equilibria and phenomena such as the Hopf bifurcation. The author also presents a general theory of determinacy for irreducible Lie group actions along the lines previously described by Field in Equivariant Bifurcation Theory and Symmetry Breaking. In the main result of this work, it is shown that branching patterns for generic equivariant bifurcation problems defined on irreducible representations persist under perturbations by sufficiently high order non-equivariant terms. The author gives applications of this result to normal form computations yielding, for example, equivariant Hopf bifurcations and shows how normal form computations of branching and stabilities are valid when taking account of the non-normalized tail.

Provides a self-contained introduction to Lie groups and makes results about the structure of Lie groups and compact groups available to a wide audience.

The subject matter of compact groups is frequently cited in fields like algebra, topology, functional analysis, and theoretical physics. This book serves the dual purpose of providing a textbook on it for upper level graduate courses or seminars, and of serving as a source book for research specialists who need to apply the structure and representation theory of compact groups. After a gentle introduction to compact groups and their representation theory, the book presents self-contained courses on linear Lie groups, on compact Lie groups, and on locally compact abelian groups. Separate appended chapters contain the material for courses on abelian groups and on category theory. However, the thrust of the book points in the direction of the structure theory of not necessarily finite dimensional, nor necessarily commutative, compact groups, unfettered by weight restrictions or dimensional bounds. In the process it utilizes infinite dimensional Lie algebras and the exponential function of arbitrary compact groups. The first edition of 1998 and the second edition of 2006 were well received by reviewers and have been frequently quoted in the areas of instruction and research. For the present new edition the text has been cleaned of typographical flaws and the content has been conceptually sharpened in some places and polished and improved in others. New material has been added to various sections taking into account the progress of research on compact groups both by the authors and other writers. Motivation was provided, among other things, by questions about the structure of compact groups put to the authors by readers through the years following the earlier editions. Accordingly, the authors wished to clarify some aspects of the book which they felt needed improvement. The list of references has increased as the authors included recent publications pertinent to the content of the book.