Building Embedded Systems

Programmable Hardware

Author: Changyi Gu

Publisher: Apress


Category: Computers

Page: 322

View: 973

Develop the software and hardware you never think about. We're talking about the nitty-gritty behind the buttons on your microwave, inside your thermostat, inside the keyboard used to type this description, and even running the monitor on which you are reading it now. Such stuff is termed embedded systems, and this book shows how to design and develop embedded systems at a professional level. Because yes, many people quietly make a successful career doing just that. Building embedded systems can be both fun and intimidating. Putting together an embedded system requires skill sets from multiple engineering disciplines, from software and hardware in particular. Building Embedded Systems is a book about helping you do things in the right way from the beginning of your first project: Programmers who know software will learn what they need to know about hardware. Engineers with hardware knowledge likewise will learn about the software side. Whatever your background is, Building Embedded Systems is the perfect book to fill in any knowledge gaps and get you started in a career programming for everyday devices. Author Changyi Gu brings more than fifteen years of experience in working his way up the ladder in the field of embedded systems. He brings knowledge of numerous approaches to embedded systems design, including the System on Programmable Chips (SOPC) approach that is currently growing to dominate the field. His knowledge and experience make Building Embedded Systems an excellent book for anyone wanting to enter the field, or even just to do some embedded programming as a side project. What You Will Learn Program embedded systems at the hardware level Learn current industry practices in firmware development Develop practical knowledge of embedded hardware options Create tight integration between software and hardware Practice a work flow leading to successful outcomes Build from transistor level to the system level Make sound choices between performance and cost Who This Book Is For Embedded-system engineers and intermediate electronics enthusiasts who are seeking tighter integration between software and hardware. Those who favor the System on a Programmable Chip (SOPC) approach will in particular benefit from this book. Students in both Electrical Engineering and Computer Science can also benefit from this book and the real-life industry practice it provides.

Building Embedded Linux Systems

Concepts, Techniques, Tricks, and Traps

Author: Karim Yaghmour

Publisher: "O'Reilly Media, Inc."


Category: Computers

Page: 464

View: 872

There's a great deal of excitement surrounding the use of Linux in embedded systems -- for everything from cell phones to car ABS systems and water-filtration plants -- but not a lot of practical information. Building Embedded Linux Systems offers an in-depth, hard-core guide to putting together embedded systems based on Linux. Updated for the latest version of the Linux kernel, this new edition gives you the basics of building embedded Linux systems, along with the configuration, setup, and use of more than 40 different open source and free software packages in common use. The book also looks at the strengths and weaknesses of using Linux in an embedded system, plus a discussion of licensing issues, and an introduction to real-time, with a discussion of real-time options for Linux. This indispensable book features arcane and previously undocumented procedures for: Building your own GNU development toolchain Using an efficient embedded development framework Selecting, configuring, building, and installing a target-specific kernel Creating a complete target root filesystem Setting up, manipulating, and using solid-state storage devices Installing and configuring a bootloader for the target Cross-compiling a slew of utilities and packages Debugging your embedded system using a plethora of tools and techniques Using the uClibc, BusyBox, U-Boot, OpenSSH, thttpd, tftp, strace, and gdb packages By presenting how to build the operating system components from pristine sources and how to find more documentation or help, Building Embedded Linux Systems greatly simplifies the task of keeping complete control over your embedded operating system.

Node.js for Embedded Systems

Using Web Technologies to Build Connected Devices

Author: Patrick Mulder

Publisher: "O'Reilly Media, Inc."



Page: 266

View: 842

How can we build bridges from the digital world of the Internet to the analog world that surrounds us? By bringing accessibility to embedded components such as sensors and microcontrollers, JavaScript and Node.js might shape the world of physical computing as they did for web browsers. This practical guide shows hardware and software engineers, makers, and web developers how to talk in JavaScript with a variety of hardware platforms. Authors Patrick Mulder and Kelsey Breseman also delve into the basics of microcontrollers, single-board computers, and other hardware components. Use JavaScript to program microcontrollers with Arduino and Espruino Prototype IoT devices with the Tessel 2 development platform Learn about electronic input and output components, including sensors Connect microcontrollers to the Internet with the Particle Photon toolchain Run Node.js on single-board computers such as Raspberry Pi and Intel Edison Talk to embedded devices with Node.js libraries such as Johnny-Five, and remotely control the devices with Bluetooth Use MQTT as a message broker to connect devices across networks Explore ways to use robots as building blocks for shared experiences

Component-Based Software Development for Embedded Systems

An Overview of Current Research Trends

Author: Colin Atkinson

Publisher: Springer Science & Business Media


Category: Computers

Page: 344

View: 755

Embedded systems are ubiquitous. They appear in cell phones, microwave ovens, refrigerators, consumer electronics, cars, and jets. Some of these embedded s- tems are safety- or security-critical such as in medical equipment, nuclear plants, and X-by-wire control systems in naval, ground and aerospace transportation - hicles. With the continuing shift from hardware to software, embedded systems are increasingly dominated by embedded software. Embedded software is complex. Its engineering inherently involves a mul- disciplinary interplay with the physics of the embedding system or environment. Embedded software also comes in ever larger quantity and diversity. The next generation of premium automobiles will carry around one gigabyte of binary code. The proposed US DDX submarine is e?ectively a ?oating embedded so- ware system, comprising 30 billion lines of code written in over 100 programming languages. Embedded software is expensive. Cost estimates are quoted at around US$15– 30 per line (from commencement to shipping). In the defense realm, costs can range up to $100, while for highly critical applications, such as the Space Shuttle, the cost per line approximates $1,000. In view of the exponential increase in complexity, the projected costs of future embedded software are staggering.

Designing Embedded Systems with PIC Microcontrollers

Principles and Applications

Author: Tim Wilmshurst

Publisher: Newnes


Category: Computers

Page: 704

View: 876

PIC microcontrollers are used worldwide in commercial and industrial devices. The 8-bit PIC which this book focuses on is a versatile work horse that completes many designs. An engineer working with applications that include a microcontroller will no doubt come across the PIC sooner rather than later. It is a must to have a working knowledge of this 8-bit technology. This book takes the novice from introduction of embedded systems through to advanced development techniques for utilizing and optimizing the PIC family of microcontrollers in your device. To truly understand the PIC, assembly and C programming language must be understood. The author explains both with sample code and examples, and makes the transition from the former to the latter an easy one. This is a solid building block for future PIC endeavors. New to the 2nd Edition: *Include end of chapter questions/activities moving from introductory to advanced *More worked examples *Includes PowerPoint slides for instructors *Includes all code snips on a companion web site for ease of use *A survey of 16/32-bit PICs *A project using ZigBee *Covers both assembly and C programming languages, essential for optimizing the PIC *Amazing breadth of coverage moving from introductory to advanced topics covering more and more complex microcontroller families *Details MPLAB and other Microchip design tools

Design and Analysis of Distributed Embedded Systems

IFIP 17th World Computer Congress - TC10 Stream on Distributed and Parallel Embedded Systems (DIPES 2002) August 25–29, 2002, Montréal, Québec, Canada

Author: Bernd Kleinjohann

Publisher: Springer Science & Business Media


Category: Computers

Page: 286

View: 441

Design and Analysis of Distributed Embedded Systems is organized similar to the conference. Chapters 1 and 2 deal with specification methods and their analysis while Chapter 6 concentrates on timing and performance analysis. Chapter 3 describes approaches to system verification at different levels of abstraction. Chapter 4 deals with fault tolerance and detection. Middleware and software reuse aspects are treated in Chapter 5. Chapters 7 and 8 concentrate on the distribution related topics such as partitioning, scheduling and communication. The book closes with a chapter on design methods and frameworks.

Real-Time Embedded Systems

Design Principles and Engineering Practices

Author: Xiaocong Fan

Publisher: Newnes


Category: Computers

Page: 686

View: 946

This book integrates new ideas and topics from real time systems, embedded systems, and software engineering to give a complete picture of the whole process of developing software for real-time embedded applications. You will not only gain a thorough understanding of concepts related to microprocessors, interrupts, and system boot process, appreciating the importance of real-time modeling and scheduling, but you will also learn software engineering practices such as model documentation, model analysis, design patterns, and standard conformance. This book is split into four parts to help you learn the key concept of embedded systems; Part one introduces the development process, and includes two chapters on microprocessors and interrupts---fundamental topics for software engineers; Part two is dedicated to modeling techniques for real-time systems; Part three looks at the design of software architectures and Part four covers software implementations, with a focus on POSIX-compliant operating systems. With this book you will learn: The pros and cons of different architectures for embedded systems POSIX real-time extensions, and how to develop POSIX-compliant real time applications How to use real-time UML to document system designs with timing constraints The challenges and concepts related to cross-development Multitasking design and inter-task communication techniques (shared memory objects, message queues, pipes, signals) How to use kernel objects (e.g. Semaphores, Mutex, Condition variables) to address resource sharing issues in RTOS applications The philosophy underpinning the notion of "resource manager" and how to implement a virtual file system using a resource manager The key principles of real-time scheduling and several key algorithms Coverage of the latest UML standard (UML 2.4) Over 20 design patterns which represent the best practices for reuse in a wide range of real-time embedded systems Example codes which have been tested in QNX---a real-time operating system widely adopted in industry

Embedded Software Development with C

Author: Kai Qian

Publisher: Springer Science & Business Media


Category: Computers

Page: 390

View: 225

Embedded Software Development With C offers both an effectual reference for professionals and researchers, and a valuable learning tool for students by laying the groundwork for a solid foundation in the hardware and software aspects of embedded systems development. Key features include a resource for the fundamentals of embedded systems design and development with an emphasis on software, an exploration of the 8051 microcontroller as it pertains to embedded systems, comprehensive tutorial materials for instructors to provide students with labs of varying lengths and levels of difficulty, and supporting website including all sample codes, software tools and links to additional online references.

Embedded Systems Building Blocks

Complete and Ready-to-use Modules in C

Author: Jean J. Labrosse

Publisher: Prentice Hall


Category: C (Computer program language)

Page: 616

View: 432

This text provides basic, real-time systems modules and explains how to use and modify them. It provides common designs for all applications such as keyboard, interaction, date and time, and event timing.

DSP Software Development Techniques for Embedded and Real-Time Systems

Author: Robert Oshana

Publisher: Elsevier


Category: Technology & Engineering

Page: 608

View: 702

Today's embedded and real-time systems contain a mix of processor types: off-the-shelf microcontrollers, digital signal processors (DSPs), and custom processors. The decreasing cost of DSPs has made these sophisticated chips very attractive for a number of embedded and real-time applications, including automotive, telecommunications, medical imaging, and many others—including even some games and home appliances. However, developing embedded and real-time DSP applications is a complex task influenced by many parameters and issues. DSP Software Development Techniques for Embedded and Real-Time Systems is an introduction to DSP software development for embedded and real-time developers giving details on how to use digital signal processors efficiently in embedded and real-time systems. The book covers software and firmware design principles, from processor architectures and basic theory to the selection of appropriate languages and basic algorithms. The reader will find practical guidelines, diagrammed techniques, tool descriptions, and code templates for developing and optimizing DSP software and firmware. The book also covers integrating and testing DSP systems as well as managing the DSP development effort. Digital signal processors (DSPs) are the future of microchips! Includes practical guidelines, diagrammed techniques, tool descriptions, and code templates to aid in the development and optimization of DSP software and firmware