Biogeochemistry of a Forested Ecosystem

Author: Gene E. Likens

Publisher: Springer Science & Business Media

ISBN:

Category: Science

Page: 159

View: 694

When we originally published Biogeochemistry of a Forested Ecosystem in 1977, the Hubbard Brook Ecosystem Study (HBES) had been in existence for 14 years, and we included data through 1974, or a biogeo chemical record of 11 years. Now our continuous, long-term biogeo chemical records cover more than 31 years, and there have been many changes. The most notable change, however, is that three of our coauthors on the original volume are now deceased. They are deeply missed in so many ways. In spite of the longer records, different trends, and new insights, we believe that the basic concepts and approaches we presented in 1977 represent the most valuable contribution of the original edition. They are still valid and useful, particularly for an introductory study of, or course in, biogeochemistry. Our goal in this revision is to preserve these fea tures, correct errors, and revise or eliminate misleading or ambiguous short-term data (11 years!), while maintaining approximately the original length and the modest cost.

Biogeochemistry of a Forested Ecosystem

Author: Gene E. Likens

Publisher: Springer

ISBN:

Category: Science

Page: 208

View: 549

The goal of this Third Edition is to update long-term data presented in earlier editions and to generate new syntheses and conclusions about the biogeochemistry of the Hubbard Brook Valley based on these longer-term data. There have been many changes, revelations, and exciting new insights generated from the longer data records. For example, the impact of acid rain peaked during the period of the HBES and is now declining. The longer-term data also posed challenges in that very marked changes in fluxes occurred in some components, such as hydrogen ion and sulfate deposition, calcium and nitrate export in stream water and biomass accumulation, during the almost 50 years of record. Thus, presenting “mean” or “average” conditions for many components for such a long period, when change was so prominent, do not make sense. In some cases, pentads or decades of time are compared to show these changes in a more smoothed and rational way for this long period. In some cases, a single period, often during periods of rapid change, such as acidification, is used to illustrate the main point(s). And, for some elements a unique mass balance approach, allowing the calculation of the Net Ecosystem Flux (NEF), is shown on an annual basis throughout the study.

Biogeochemistry of Forested Catchments in a Changing Environment

A German Case Study

Author: Egbert Matzner

Publisher: Springer Science & Business Media

ISBN:

Category: Science

Page: 500

View: 517

Forest ecosystems represent a major type ofland use in Germanyand in Europe. They provide a number of functions, or ecosystem services, beneficial to humans, namely biomass production, regulation of the water- and energy cyde, C and N sequestration, erosion control, recreation, and they act as habitat for numerous species. The stability of forest ecosystems in Europe as influenced by the deposition of air pollutants has been a matter of debate for more than 20 years. Besides atmospheric deposition, other environmental conditions affecting forest ecosystems, such as temperature, CO content of the atmosphere 2 and precipitation, have significantly changed in the past and continue to change in the future. Quantifying and predicting the effects of these changes on ecosys tem functioning are achallenge to ecosystem research and also a requirement to establish sustainable use of forest ecosystems in the future. This book summarizes results of long-term, interdisciplinary ecosystem research conducted in two forested catchments and coordinated at the Bayreuth Institute of Terrestrial Ecosystem Research (BITÖK), University of Bayreuth, Germany. It does not aim to summarize all the research of BITÖ K in the past decade, which would go far beyond the studies in these two catch ments. Instead, we concentrate here on the long-term developments in the biogeochemistry of carbon and mineral elements and on the water cyde, at both the plot and the catchment scale.

Pattern and Process in a Forested Ecosystem

Disturbance, Development and the Steady State Based on the Hubbard Brook Ecosystem Study

Author: F.Herbert Bormann

Publisher: Springer Science & Business Media

ISBN:

Category: Science

Page: 272

View: 867

The advent of ecosystem ecology has created great difficulties for ecologists primarily trained as biologists, since inevitably as the field grew, it absorbed components of other disciplines relatively foreign to most ecologists yet vital to the understanding of the structure and function of ecosystems. From the point of view of the biological ecologist struggling to understand the enormous complexity of the biological functions within an ecosystem, the added necessity of integrating biology with geochemis try, hydrology, micrometeorology, geomorphology, pedology, and applied sciences (like silviculture and land use management) often has appeared as an impossible requirement. Ecologists have frequently responded by limiting their perspective to biology with the result that the modeling of species interactions is sometimes considered as modeling ecosystems, or modeling the living fraction of the ecosystems is considered as modeling whole ecosystems. Such of course is not the case, since understanding the structure and function of ecosystems requires sound understanding of inanimate as well as animate processes and often neither can be under stood without the other. About 15 years ago, a view of ecology somewhat different from most then prevailing, coupled with a strong dose of naivete and a sense of exploration, lead us to believe that consideration of the inanimate side of ecosystem function rather than being just one more annoying complexity might provide exceptional advantages in the study of ecosystems. To examine this possibility, we took two steps which occurred more or less simultaneously.

Forest Hydrology and Biogeochemistry

Synthesis of Past Research and Future Directions

Author: Delphis F. Levia

Publisher: Springer Science & Business Media

ISBN:

Category: Science

Page: 740

View: 658

This international rigorously peer-reviewed volume critically synthesizes current knowledge in forest hydrology and biogeochemistry. It is a one-stop comprehensive reference tool for researchers and practitioners in the fields of hydrology, biogeoscience, ecology, forestry, boundary-layer meteorology, and geography. Following an introductory chapter tracing the historical roots of the subject, the book is divided into the following main sections: · Sampling and Novel Approaches · Forest Hydrology and Biogeochemistry by Ecoregion and Forest Type · Hydrologic and Biogeochemical Fluxes from the Canopy to the Phreatic Surface · Hydrologic and Biogeochemical Fluxes in Forest Ecosystems: Effects of Time, Stressors, and Humans The volume concludes with a final chapter that reflects on the current state of knowledge and identifies some areas in need of further research.

Biogeochemistry of a Forested Ecosystem

Author: Gene E. Likens

Publisher: Springer Science & Business Media

ISBN:

Category: Science

Page: 208

View: 571

The goal of this Third Edition is to update long-term data presented in earlier editions and to generate new syntheses and conclusions about the biogeochemistry of the Hubbard Brook Valley based on these longer-term data. There have been many changes, revelations, and exciting new insights generated from the longer data records. For example, the impact of acid rain peaked during the period of the HBES and is now declining. The longer-term data also posed challenges in that very marked changes in fluxes occurred in some components, such as hydrogen ion and sulfate deposition, calcium and nitrate export in stream water and biomass accumulation, during the almost 50 years of record. Thus, presenting “mean” or “average” conditions for many components for such a long period, when change was so prominent, do not make sense. In some cases, pentads or decades of time are compared to show these changes in a more smoothed and rational way for this long period. In some cases, a single period, often during periods of rapid change, such as acidification, is used to illustrate the main point(s). And, for some elements a unique mass balance approach, allowing the calculation of the Net Ecosystem Flux (NEF), is shown on an annual basis throughout the study.

Biogeochemistry of a Forested Ecosystem

Author: G. E. Likens

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 146

View: 307

About 15 years ago we began the Hubbard Brook Ecosys tem Study with the development of an ecosystem model and the conception of a method whereby some major parameters of the model could be directly measured under field conditions. The method, called "the small watershed technique," allowed measurement of input and output of chemicals and the construction of ecosystem nutrient bud gets. Although the Hubbard Brook study of nutrient cycling originated with ideas developed by F. H. Bormann and G. E. Likens, its early growth was aided by the remaining authors of this volume-Robert Pierce, forest hydrologist; Noye Johnson, geochemist; and John Eaton, forest ecologist. Donald W. Fisher of the United States Geological Survey also cooperated in the early phases of the project and provided numerous data on the chemistry of precipitation and stream water. Particular credit is due the United States Forest Service, whose scientists chose the Hubbard Brook Valley as a hydrologic study site, selected particular watersheds for intensive measurement, carried out a variety of basic hydrologic studies, and in general cooperated with us in many ways to make the Hubbard Brook Ecosystem Study a reality. The initial part of the ecosystem study was concerned primarily with nutrient flux and cycling and it was done slowly and deliberately. The entire effort during the first few years of study was carried forward by three of us at vi Preface Dartmouth College with the cooperation of the United States Forest Service.

Ecosystem Biogeochemistry

Element Cycling in the Forest Landscape

Author: Christopher S. Cronan

Publisher: Springer

ISBN:

Category: Science

Page: 203

View: 605

This textbook presents a comprehensive process-oriented approach to biogeochemistry that is intended to appeal to readers who want to go beyond a general exposure to topics in biogeochemistry, and instead are seeking a holistic understanding of the interplay of biotic and environmental drivers in the cycling of elements in forested watersheds. The book is organized around a core set of ecosystem processes and attributes that collectively help to generate the whole-system structure and function of a terrestrial ecosystem. In the first nine chapters, a conceptual framework is developed based on distinct soil, microbial, plant, atmospheric, hydrologic, and geochemical processes that are integrated in the element cycling behavior of watershed ecosystems. With that conceptual foundation in place, students then proceed to the final three chapters where they are challenged to think critically about integrated element cycling patterns; roles for biogeochemical models; the likely impacts of disturbance, stress, and management on watershed biogeochemistry; and linkages among patterns and processes in watersheds experiencing novel environmental changes. Included with the text are figures, tables of comparative data, extensive literature citations, a glossary of terms, an index, and a set of 24 biogeochemical problems with answers. The problems are intended to support chapter concepts and to demonstrate how critical thinking skills, simple algebra, and thoughtful human logic can be used to solve applied problems in biogeochemistry that might be encountered by a research scientist or a resource manager. Using this book as an introduction to biogeochemistry, students will achieve a level of subject mastery and disciplinary perspective that will permit them to see and to interpret the individual components, interactions, and synergies that are represented in the dynamic element cycling patterns of watershed ecosystems.

Special Issue

Biogeochemistry of Forested Ecosystems

Author:

Publisher:

ISBN:

Category:

Page: 225

View: 693

Biogeochemistry of Forested Catchments in a Changing Environment

A German Case Study

Author: Egbert Matzner

Publisher: Springer

ISBN:

Category: Science

Page: 500

View: 871

Forest ecosystems represent a major type ofland use in Germanyand in Europe. They provide a number of functions, or ecosystem services, beneficial to humans, namely biomass production, regulation of the water- and energy cyde, C and N sequestration, erosion control, recreation, and they act as habitat for numerous species. The stability of forest ecosystems in Europe as influenced by the deposition of air pollutants has been a matter of debate for more than 20 years. Besides atmospheric deposition, other environmental conditions affecting forest ecosystems, such as temperature, CO content of the atmosphere 2 and precipitation, have significantly changed in the past and continue to change in the future. Quantifying and predicting the effects of these changes on ecosys tem functioning are achallenge to ecosystem research and also a requirement to establish sustainable use of forest ecosystems in the future. This book summarizes results of long-term, interdisciplinary ecosystem research conducted in two forested catchments and coordinated at the Bayreuth Institute of Terrestrial Ecosystem Research (BITÖK), University of Bayreuth, Germany. It does not aim to summarize all the research of BITÖ K in the past decade, which would go far beyond the studies in these two catch ments. Instead, we concentrate here on the long-term developments in the biogeochemistry of carbon and mineral elements and on the water cyde, at both the plot and the catchment scale.

Biogeochemistry of Forested Ecosystem

Selected Papers from BIOGEOMON, the 5th International Symposium on Ecosystem Behaviour, Held at the University of California, Santa Cruz, on June 25-30, 2006

Author: Martin Novák

Publisher:

ISBN:

Category: Biogeochemistry

Page:

View: 318

Carbon and Nitrogen Cycling in European Forest Ecosystems

Author: Ernst-Detlef Schulze

Publisher: Springer Science & Business Media

ISBN:

Category: Science

Page: 506

View: 453

This volume quantifies carbon storage in managed forest ecosystems not only in biomass, but also in all soil compartments. It investigates the interaction between the carbon and nitrogen cycles by working along a north-south transect through Europe that starts in northern Sweden, passes through a N-deposition maximum in central Europe and ends in Italy. For the first time biogeochemical processes are linked to biodiversity on a large geographic scale and with special focus on soil organisms. The accompanying CD-ROM provides a complete database of all flux, storage and species observations for modellers.

Forest Ecosystems

Analysis at Multiple Scales

Author: Richard H. Waring

Publisher: Elsevier

ISBN:

Category: Technology & Engineering

Page: 440

View: 500

This revision maintains the position of Forest Ecosystems as the one source for the latest information on the advanced methods that have enhanced our understating of forest ecosystems. Further understanding is given to techniques to explore the changes in climatic cycles, the implications of wide-scale pollution, fire and other ecological disturbances that have a global effect. The inclusion of models, equations, graphs, and tabular examples provides readers with a full understanding of the methods and techniques. Includes a revised section on important advances in regional scale analyses Features an update to global scale analyses including revised color images Provides a detailed comparison of predicted vs. observed tree diversity across 65 eco-regions

Modern Biogeochemistry

Author: V.N. Bashkin

Publisher: Springer Science & Business Media

ISBN:

Category: Science

Page: 561

View: 286

Modern Biogeochemistry is aimed to generalize modern ideas of biogeochemical developments during the last decades. It is designed to support a general course in biogeochemistry, and as such, is likely to have a broad market among the many universities and colleges that are adding such courses to their curricula. This book aims to supplement the existing textbooks by providing modern understanding of biogeochemistry, from evolutionary biogeochemistry to practical applications of biogeochemical ideas such as human biogeochemistry, biogeochemical standards and biogeochemical technologies. To a certain extent this textbook is a summary of both scientific results of various authors and classes in biogeochemistry, that have been given to students by authors during the last 5 to 10 years at different universities throughout the world such as Cornell, Moscow, Seoul and Bangkok. Biogeochemistry is becoming an increasingly popular subject for graduate and postgraduate education. Courses in ecology, geography, biology, chemistry, environmental science, public health and environmental engineering all tend to have a biogeochemical component in their syllabuses to a greater or lesser extent.

Forest Ecosystems and Environments

Scaling Up from Shoot Module to Watershed

Author: Takashi Kohyama

Publisher: Springer Science & Business Media

ISBN:

Category: Science

Page: 156

View: 340

Coastal East and Southeast Asia are characterized by wet growing seasons, and species-rich forest ecosystems develop throughout the latitudinal and altitudinal gradients. In this region, the Global Change Impacts on Terrestrial Ecosystems in Monsoon Asia (TEMA) project was carried out as a unique contribution to the international project Global Change and Terrestrial Ecosystems. TEMA aimed to integrate forest ecosystem processes, from leaf physiology to meteorological budget and prediction of long-term change of vegetation composition and architecture through demographic processes. Special attention was given to watershed processes, where forest ecosystem metabolism affects the properties and biogeochemical budgets of freshwater ecosystems, and where rivers, wetlands, and lakes are subject to direct and indirect effects of environmental change. This volume presents the scaling-up concept for better understanding of ecosystem functioning.