**Author**: Robin Hartshorne

**Publisher:** Springer Science & Business Media

**ISBN:**

**Category:** Mathematics

**Page:** 496

**View:** 368

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Students often find, in setting out to study algebraic geometry, that most of the serious textbooks on the subject require knowledge of ring theory, field theory, local rings, and transcendental field extensions, and even sheaf theory. Often the expected background goes well beyond college mathematics. This book, aimed at senior undergraduates and graduate students, grew out of Miyanishi's attempt to lead students to an understanding of algebraic surfaces while presenting thenecessary background along the way. Originally published in Japanese in 1990, it presents a self-contained introduction to the fundamentals of algebraic geometry. This book begins with background on commutative algebras, sheaf theory, and related cohomology theory. The next part introduces schemes andalgebraic varieties, the basic language of algebraic geometry. The last section brings readers to a point at which they can start to learn about the classification of algebraic surfaces.

The classification theory of algebraic varieties is the focus of this book. This very active area of research is still developing, but an amazing quantity of knowledge has accumulated over the past twenty years. The authors goal is to provide an easily accessible introduction to the subject. The book starts with preparatory and standard definitions and results, then moves on to discuss various aspects of the geometry of smooth projective varieties with many rational curves, and finishes in taking the first steps towards Moris minimal model program of classification of algebraic varieties by proving the cone and contraction theorems. The book is well-organized and the author has kept the number of concepts that are used but not proved to a minimum to provide a mostly self-contained introduction.

Aimed primarily at graduate students and beginning researchers, this book provides an introduction to algebraic geometry that is particularly suitable for those with no previous contact with the subject; it assumes only the standard background of undergraduate algebra. The book starts with easily-formulated problems with non-trivial solutions and uses these problems to introduce the fundamental tools of modern algebraic geometry: dimension; singularities; sheaves; varieties; and cohomology. A range of exercises is provided for each topic discussed, and a selection of problems and exam papers are collected in an appendix to provide material for further study.

Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.

This classic work (first published in 1947), in three volumes, provides a lucid and rigorous account of the foundations of modern algebraic geometry. The authors have confined themselves to fundamental concepts and geometrical methods, and do not give detailed developments of geometrical properties but geometrical meaning has been emphasized throughout. This first volume is divided into two parts. The first is devoted to pure algebra: the basic notions, the theory of matrices over a non-commutative ground field and a study of algebraic equations. The second part is in n dimensions. It concludes with a purely algebraic account of collineations and correlations.

From the reviews: "Although several textbooks on modern algebraic geometry have been published in the meantime, Mumford's "Volume I" is, together with its predecessor the red book of varieties and schemes, now as before one of the most excellent and profound primers of modern algebraic geometry. Both books are just true classics!" Zentralblatt

"This book succeeds brilliantly by concentrating on a number of core topics...and by treating them in a hugely rich and varied way. The author ensures that the reader will learn a large amount of classical material and perhaps more importantly, will also learn that there is no one approach to the subject. The essence lies in the range and interplay of possible approaches. The author is to be congratulated on a work of deep and enthusiastic scholarship." --MATHEMATICAL REVIEWS

The study of vector bundles over algebraic varieties has been stimulated over the last few years by successive waves of migrant concepts, largely from mathematical physics, whilst retaining its roots in old questions concerning subvarieties of projective space. The 1993 Durham Symposium on Vector Bundles in Algebraic Geometry brought together some of the leading researchers in the field to explore further these interactions. This book is a collection of survey articles by the main speakers at the symposium and presents to the mathematical world an overview of the key areas of research involving vector bundles. Topics covered include those linking gauge theory and geometric invariant theory such as augmented bundles and coherent systems; Donaldson invariants of algebraic surfaces; Floer homology and quantum cohomology; conformal field theory and the moduli spaces of bundles on curves; the Horrocks–Mumford bundle and codimension 2 subvarieties in P4 and P5; exceptional bundles and stable sheaves on projective space.