Topology

An Introduction with Application to Topological Groups

Author: George McCarty

Publisher: Courier Corporation

ISBN: 0486450821

Category: Mathematics

Page: 288

View: 2118

This stimulating introduction employs the language of point set topology to define and discuss topological groups. It examines set-theoretic topology and its applications in function spaces as well as homotopy and the fundamental group. Well-chosen exercises and problems serve as reinforcements. 1967 edition. Includes 99 illustrations.

Introduction to Topological Groups

Author: Taqdir Husain

Publisher: Courier Dover Publications

ISBN: 0486819191

Category: Mathematics

Page: 240

View: 8442

Concise treatment covers semitopological groups, locally compact groups, Harr measure, and duality theory and some of its applications. The volume concludes with a chapter that introduces Banach algebras. 1966 edition.

Algebraic Topology

Author: C. R. F. Maunder

Publisher: Courier Corporation

ISBN: 9780486691312

Category: Mathematics

Page: 375

View: 7696

Based on lectures to advanced undergraduate and first-year graduate students, this is a thorough, sophisticated, and modern treatment of elementary algebraic topology, essentially from a homotopy theoretic viewpoint. Author C.R.F. Maunder provides examples and exercises; and notes and references at the end of each chapter trace the historical development of the subject.

Introduction to Topology

Second Edition

Author: Theodore W. Gamelin,Robert Everist Greene

Publisher: Courier Corporation

ISBN: 0486320189

Category: Mathematics

Page: 256

View: 5129

This text explains nontrivial applications of metric space topology to analysis. Covers metric space, point-set topology, and algebraic topology. Includes exercises, selected answers, and 51 illustrations. 1983 edition.

A Combinatorial Introduction to Topology

Author: Michael Henle

Publisher: Courier Corporation

ISBN: 9780486679662

Category: Mathematics

Page: 310

View: 8278

Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.

Principles of Topology

Author: Fred H. Croom

Publisher: Courier Dover Publications

ISBN: 0486801543

Category: Mathematics

Page: 336

View: 8220

Originally published: Philadelphia: Saunders College Publishing, 1989; slightly corrected.

Elementary Concepts of Topology

Author: Paul Alexandroff

Publisher: Courier Corporation

ISBN: 0486155064

Category: Mathematics

Page: 64

View: 7027

Concise work presents topological concepts in clear, elementary fashion, from basics of set-theoretic topology, through topological theorems and questions based on concept of the algebraic complex, to the concept of Betti groups. Includes 25 figures.

Invitation to Combinatorial Topology

Author: Maurice Fréchet,Ky Fan

Publisher: Courier Corporation

ISBN: 0486147886

Category: Mathematics

Page: 136

View: 2781

Elementary text, accessible to anyone with a background in high school geometry, covers problems inherent to coloring maps, homeomorphism, applications of Descartes' theorem, topological polygons, more. Includes 108 figures. 1967 edition.

General Topology

Author: Stephen Willard

Publisher: Courier Corporation

ISBN: 9780486434797

Category: Mathematics

Page: 369

View: 2446

Among the best available reference introductions to general topology, this volume is appropriate for advanced undergraduate and beginning graduate students. Includes historical notes and over 340 detailed exercises. 1970 edition. Includes 27 figures.

An Introduction to the Theory of Elasticity

Author: R. J. Atkin,N. Fox

Publisher: Courier Corporation

ISBN: 0486150992

Category: Science

Page: 272

View: 6016

Accessible text covers deformation and stress, derivation of equations of finite elasticity, and formulation of infinitesimal elasticity with application to two- and three-dimensional static problems and elastic waves. 1980 edition.

An Introduction to Differential Geometry

Author: T. J. Willmore

Publisher: Courier Corporation

ISBN: 0486282104

Category: Mathematics

Page: 336

View: 5248

This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.

Differentialgeometrie von Kurven und Flächen

Author: Manfredo P. do Carmo

Publisher: Springer-Verlag

ISBN: 3322850722

Category: Technology & Engineering

Page: 263

View: 1066

Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang

Selected Papers on Noise and Stochastic Processes

Author: Nelson Wax

Publisher: Courier Corporation

ISBN: 0486798267

Category: Technology & Engineering

Page: 352

View: 5059

These six classic papers on stochastic process were selected to meet the needs of professionals and advanced undergraduates and graduate students in physics, applied mathematics, and engineering. Contents include: "Stochastic Problems in Physics and Astronomy" by S. Chandrasekhar from Reviews of Modern Physics, Vol. 15, No. 1 "On the Theory of Brownian Motion" by G. E. Uhlenbeck and L. S. Ornstein from Physical Review, Vol. 36, No. 3 "On the Theory of the Brownian Motion II" by Ming Chen Wang and G. E. Uhlenbeck from Reviews of Modern Physics, Vol. 17, Nos. 2 and 3 "Mathematical Analysis of Random Noise" by S. O. Rice from Bell System Technical Journal, Vols. 23 and 24 "Random Walk and the Theory of Brownian Motion" by Mark Kac from American Mathematical Monthly, Vol. 54, No. 7 "The Brownian Movement and Stochastic Equations" by J. L. Doob from Annals of Mathematics, Vol. 43, No. 2

Combinatorial Topology

Author: Pavel S. Aleksandrov

Publisher: Courier Corporation

ISBN: 9780486401799

Category: Mathematics

Page: 148

View: 2276

Clearly written, well-organized, 3-part text begins by dealing with certain classic problems without using the formal techniques of homology theory and advances to the central concept, the Betti groups. Numerous detailed examples.

Manifolds and Modular Forms

Author: Friedrich Hirzebruch

Publisher: Springer-Verlag

ISBN: 3663140458

Category: Mathematics

Page: 212

View: 4050

Einführung in die Differentialtopologie

Korrigierter Nachdruck

Author: Theodor Bröcker,Klaus Jänich

Publisher: Springer

ISBN: 9783540064619

Category: Mathematics

Page: 168

View: 9469

Das Ziel dieses Buches ist, die eigentlich elementargeometrischen Methoden der Differentialtopologie darzustellen. Es richtet sich an Studenten mit Grundkenntnissen in Analysis und allgemeiner Topologie. Wir beweisen Einbettungs-, Isotopie-und Transversalitätssätze und behandeln als wichtige Techniken den Satz von Sard, Partitionen der Eins, dynamische Systeme und (nach Serge Langs Vorbild) Sprays, die zusammenhängende Summe, Tubenumgebungen, Kra­ gen und das Zusammenkleben von berandeten Mannigfaltigkeiten längs des Randes. Wir haben, wie wohl heute jeder jüngere Topologe, aus Milnors Schriften [4, 5, 6J selbst viel gelernt, wovon sich mancherlei Spuren im Text finden, und auch Serge Langs vorzügliche Darstellung [3J haben wir gelegentlich benutzt - was ängstlich zu vermeiden einem Buch über Differentialtopologie ja auch nicht gut tun könnte. Die jedem Kapitel reichlich beigefügten Übungsaufgaben sind für einen Anfänger nicht immer leicht; im Text werden sie nicht be­ nutzt. Nicht behandelt sind in diesem Buch die Analysis auf Mannig­ faltigkeiten (Satz von Stokes), die Morse-Theorie, die algebraische Topologie der Mannigfaltigkeiten und die Bordismentheorie. Wir hoffen aber, daß sich unser Buch als eine solide Grundlage für die nähere Bekanntschaft mit diesen weiterführenden Gebieten der Differentialtopologie erweisen wird. In diesem korrigierten Nachdruck sind zahlreiche kleine Versehen, die uns bekanntgeworden sind, berichtigt und einige Aufgaben hin­ zugekommen. Für Hinweise danken wir Kollegen und vielen interes­ sierten Lesern. Theodor Bröckt'r Regensburg, im August 1990 Klaus Jänich Inhaltsverzeichnis 1. Mannigfaltigkeiten und differenzierbare Strukturen. Ii 13 2. Der Tangentialraum ~ 3. Vektorraumbündel . 22 * 4. Lineare Algebra für Vektorraumbündel 34 ~ Lokale und tangentiale Eigenschaften. 45 5.