*An Introduction with Application to Topological Groups*

**Author**: George McCarty

**Publisher:** Courier Corporation

**ISBN:**

**Category:** Mathematics

**Page:** 270

**View:** 656

Covers sets and functions, groups, metric spaces, topologies, topological groups, compactness and connectedness, function spaces, the fundamental group, the fundamental group of the circle, locally isomorphic groups, more. 1967 edition.

Concise treatment covers semitopological groups, locally compact groups, Harr measure, and duality theory and some of its applications. The volume concludes with a chapter that introduces Banach algebras. 1966 edition.

Based on lectures to advanced undergraduate and first-year graduate students, this is a thorough, sophisticated, and modern treatment of elementary algebraic topology, essentially from a homotopy theoretic viewpoint. Author C.R.F. Maunder provides examples and exercises; and notes and references at the end of each chapter trace the historical development of the subject.

Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.

This text explains nontrivial applications of metric space topology to analysis. Covers metric space, point-set topology, and algebraic topology. Includes exercises, selected answers, and 51 illustrations. 1983 edition.

Topology is a natural, geometric, and intuitively appealing branch of mathematics that can be understood and appreciated by students as they begin their study of advanced mathematical topics. Designed for a one-semester introduction to topology at the undergraduate and beginning graduate levels, this text is accessible to students familiar with multivariable calculus. Rigorous but not abstract, the treatment emphasizes the geometric nature of the subject and the applications of topological ideas to geometry and mathematical analysis. Customary topics of point-set topology include metric spaces, general topological spaces, continuity, topological equivalence, basis, subbasis, connectedness, compactness, separation properties, metrization, subspaces, product spaces, and quotient spaces. In addition, the text introduces geometric, differential, and algebraic topology. Each chapter includes historical notes to put important developments into their historical framework. Exercises of varying degrees of difficulty form an essential part of the text.

Accessible text covers deformation and stress, derivation of equations of finite elasticity, and formulation of infinitesimal elasticity with application to two- and three-dimensional static problems and elastic waves. 1980 edition.

Extensive development of such topics as elementary combinatorial techniques, Sperner's Lemma, the Brouwer Fixed Point Theorem, and the Stone-Weierstrass Theorem. New section of solutions to selected problems.

Elementary text, accessible to anyone with a background in high school geometry, covers problems inherent to coloring maps, homeomorphism, applications of Descartes' theorem, topological polygons, more. Includes 108 figures. 1967 edition.