The Theory of Differential Equations

Classical and Qualitative

Author: Walter G. Kelley,Allan C. Peterson

Publisher: Springer Science & Business Media

ISBN: 1441957820

Category: Mathematics

Page: 423

View: 8773

For over 300 years, differential equations have served as an essential tool for describing and analyzing problems in many scientific disciplines. This carefully-written textbook provides an introduction to many of the important topics associated with ordinary differential equations. Unlike most textbooks on the subject, this text includes nonstandard topics such as perturbation methods and differential equations and Mathematica. In addition to the nonstandard topics, this text also contains contemporary material in the area as well as its classical topics. This second edition is updated to be compatible with Mathematica, version 7.0. It also provides 81 additional exercises, a new section in Chapter 1 on the generalized logistic equation, an additional theorem in Chapter 2 concerning fundamental matrices, and many more other enhancements to the first edition. This book can be used either for a second course in ordinary differential equations or as an introductory course for well-prepared students. The prerequisites for this book are three semesters of calculus and a course in linear algebra, although the needed concepts from linear algebra are introduced along with examples in the book. An undergraduate course in analysis is needed for the more theoretical subjects covered in the final two chapters.

Ordinary Differential Equations

Introduction and Qualitative Theory, Third Edition

Author: Jane Cronin

Publisher: CRC Press

ISBN: 1420014935

Category: Mathematics

Page: 408

View: 7544

Designed for a rigorous first course in ordinary differential equations, Ordinary Differential Equations: Introduction and Qualitative Theory, Third Edition includes basic material such as the existence and properties of solutions, linear equations, autonomous equations, and stability as well as more advanced topics in periodic solutions of nonlinear equations. Requiring only a background in advanced calculus and linear algebra, the text is appropriate for advanced undergraduate and graduate students in mathematics, engineering, physics, chemistry, or biology. This third edition of a highly acclaimed textbook provides a detailed account of the Bendixson theory of solutions of two-dimensional nonlinear autonomous equations, which is a classical subject that has become more prominent in recent biological applications. By using the Poincaré method, it gives a unified treatment of the periodic solutions of perturbed equations. This includes the existence and stability of periodic solutions of perturbed nonautonomous and autonomous equations (bifurcation theory). The text shows how topological degree can be applied to extend the results. It also explains that using the averaging method to seek such periodic solutions is a special case of the use of the Poincaré method.

Ordinary Differential Equations

Author: Wolfgang Walter

Publisher: Springer Science & Business Media

ISBN: 1461206014

Category: Mathematics

Page: 384

View: 8440

Based on a translation of the 6th edition of Gewöhnliche Differentialgleichungen by Wolfgang Walter, this edition includes additional treatments of important subjects not found in the German text as well as material that is seldom found in textbooks, such as new proofs for basic theorems. This unique feature of the book calls for a closer look at contents and methods with an emphasis on subjects outside the mainstream. Exercises, which range from routine to demanding, are dispersed throughout the text and some include an outline of the solution. Applications from mechanics to mathematical biology are included and solutions of selected exercises are found at the end of the book. It is suitable for mathematics, physics, and computer science graduate students to be used as collateral reading and as a reference source for mathematicians. Readers should have a sound knowledge of infinitesimal calculus and be familiar with basic notions from linear algebra; functional analysis is developed in the text when needed.

Ordinary Differential Equations

Methods and Applications

Author: W. T. Ang,Y. S. Park

Publisher: Universal-Publishers

ISBN: 1599429756

Category: Mathematics

Page: 204

View: 915

This introductory course in ordinary differential equations, intended for junior undergraduate students in applied mathematics, science and engineering, focuses on methods of solution and applications rather than theoretical analyses. Applications drawn mainly from dynamics, population biology and electric circuit theory are used to show how ordinary differential equations appear in the formulation of problems in science and engineering. The calculus required to comprehend this course is rather elementary, involving differentiation, integration and power series representation of only real functions of one variable. A basic knowledge of complex numbers and their arithmetic is also assumed, so that elementary complex functions which can be used for working out easily the general solutions of certain ordinary differential equations can be introduced. The pre-requisites just mentioned aside, the course is mainly self-contained. To promote the use of this course for self-study, suggested solutions are not only given to all set exercises, but they are also by and large complete with details.

A Textbook on Ordinary Differential Equations

Author: Shair Ahmad,Antonio Ambrosetti

Publisher: Springer

ISBN: 3319164082

Category: Mathematics

Page: 331

View: 6295

This book offers readers a primer on the theory and applications of Ordinary Differential Equations. The style used is simple, yet thorough and rigorous. Each chapter ends with a broad set of exercises that range from the routine to the more challenging and thought-provoking. Solutions to selected exercises can be found at the end of the book. The book contains many interesting examples on topics such as electric circuits, the pendulum equation, the logistic equation, the Lotka-Volterra system, the Laplace Transform, etc., which introduce students to a number of interesting aspects of the theory and applications. The work is mainly intended for students of Mathematics, Physics, Engineering, Computer Science and other areas of the natural and social sciences that use ordinary differential equations, and who have a firm grasp of Calculus and a minimal understanding of the basic concepts used in Linear Algebra. It also studies a few more advanced topics, such as Stability Theory and Boundary Value Problems, which may be suitable for more advanced undergraduate or first-year graduate students. The second edition has been revised to correct minor errata, and features a number of carefully selected new exercises, together with more detailed explanations of some of the topics. A complete Solutions Manual, containing solutions to all the exercises published in the book, is available. Instructors who wish to adopt the book may request the manual by writing directly to one of the authors.

Ordinary Differential Equations with Applications to Mechanics

Author: Mircea Soare,Petre P. Teodorescu,Ileana Toma

Publisher: Springer Science & Business Media

ISBN: 1402054408

Category: Mathematics

Page: 488

View: 630

This interdisciplinary work creates a bridge between the mathematical and the technical disciplines by providing a strong mathematical tool. The present book is a new, English edition of the volume published in 1999. It contains many improvements, as well as new topics, using enlarged and updated references. Only ordinary differential equations and their solutions in an analytical frame were considered, leaving aside their numerical approach.

Ordinary Differential Equations

An Elementary Textbook for Students of Mathematics, Engineering, and the Sciences

Author: Morris Tenenbaum,Harry Pollard

Publisher: Courier Corporation

ISBN: 0486649407

Category: Mathematics

Page: 808

View: 7430

Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.

Ordinary Differential Equations

From Calculus to Dynamical Systems

Author: Virginia W. Noonburg

Publisher: The Mathematical Association of America

ISBN: 1939512042

Category: Mathematics

Page: 315

View: 8240

This book presents a modern treatment of material traditionally covered in the sophomore-level course in ordinary differential equations. While this course is usually required for engineering students the material is attractive to students in any field of applied science, including those in the biological sciences. The standard analytic methods for solving first and second-order differential equations are covered in the first three chapters. Numerical and graphical methods are considered, side-by-side with the analytic methods, and are then used throughout the text. An early emphasis on the graphical treatment of autonomous first-order equations leads easily into a discussion of bifurcation of solutions with respect to parameters. The fourth chapter begins the study of linear systems of first-order equations and includes a section containing all of the material on matrix algebra needed in the remainder of the text. Building on the linear analysis, the fifth chapter brings the student to a level where two-dimensional nonlinear systems can be analyzed graphically via the phase plane. The study of bifurcations is extended to systems of equations, using several compelling examples, many of which are drawn from population biology. In this chapter the student is gently introduced to some of the more important results in the theory of dynamical systems. A student project, involving a problem recently appearing in the mathematical literature on dynamical systems, is included at the end of Chapter 5. A full treatment of the Laplace transform is given in Chapter 6, with several of the examples taken from the biological sciences. An appendix contains completely worked-out solutions to all of the odd-numbered exercises. The book is aimed at students with a good calculus background that want to learn more about how calculus is used to solve real problems in today's world. It can be used as a text for the introductory differential equations course, and is readable enough to be used even if the class is being "flipped." The book is also accessible as a self-study text for anyone who has completed two terms of calculus, including highly motivated high school students. Graduate students preparing to take courses in dynamical systems theory will also find this text useful.

An Introduction to Ordinary Differential Equations

Author: James C. Robinson

Publisher: Cambridge University Press

ISBN: 9780521533911

Category: Mathematics

Page: 399

View: 2069

This refreshing, introductory textbook covers both standard techniques for solving ordinary differential equations, as well as introducing students to qualitative methods such as phase-plane analysis. The presentation is concise, informal yet rigorous; it can be used either for 1-term or 1-semester courses. Topics such as Euler's method, difference equations, the dynamics of the logistic map, and the Lorenz equations, demonstrate the vitality of the subject, and provide pointers to further study. The author also encourages a graphical approach to the equations and their solutions, and to that end the book is profusely illustrated. The files to produce the figures using MATLAB are all provided in an accompanying website. Numerous worked examples provide motivation for and illustration of key ideas and show how to make the transition from theory to practice. Exercises are also provided to test and extend understanding: solutions for these are available for teachers.

Calculus and ODEs

Author: D. B. Pearson

Publisher: Butterworth-Heinemann

ISBN: 0340625309

Category: Mathematics

Page: 227

View: 9204

Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

Advanced Engineering Mathematics

Author: Taneja

Publisher: I. K. International Pvt Ltd

ISBN: 8189866486


Page: 908

View: 333

The text has been divided in two volumes: Volume I (Ch. 1-13) & Volume II (Ch. 14-22). In addition to the review material and some basic topics as discussed in the opening chapter, the main text in Volume I covers topics on infinite series, differential and integral calculus, matrices, vector calculus, ordinary differential equations, special functions and Laplace transforms. Volume II covers topics on complex analysis, Fourier analysis, partial differential equations and statistics. The present book has numerous distinguishing features over the already existing books on the same topic. The chapters have been planned to create interest among the readers to study and apply the mathematical tools. The subject has been presented in a very lucid and precise manner with a wide variety of examples and exercises, which would eventually help the reader for hassle free study.

Applied Engineering Mathematics

Author: Xin-She Yang

Publisher: Cambridge Int Science Publishing

ISBN: 1904602568

Category: Mathematics

Page: 319

View: 2926

This book strives to provide a concise and yet comprehensive cover-age of all major mathematical methods in engineering. Topics in-clude advanced calculus, ordinary and partial differential equations, complex variables, vector and tensor analysis, calculus of variations, integral transforms, integral equations, numerical methods, and prob-ability and statistics. Application topics consist of linear elasticity, harmonic motions, chaos, and reaction-diffusion systems. . This book can serve as a textbook in engineering mathematics, mathematical modelling and scientific computing. This book is organised into 19 chapters. Chapters 1-14 introduce various mathematical methods, Chapters 15-18 concern the numeri-cal methods, and Chapter 19 introduces the probability and statistics.

Ordinary Differential Equations and Stability Theory

An Introduction

Author: David A. Sánchez

Publisher: Courier Corporation

ISBN: 0486638286

Category: Mathematics

Page: 164

View: 2538

Beginning with a general discussion of the linear equation, topics developed include stability theory for autonomous and nonautonomous systems. Two appendices are also provided, and there are problems at the end of each chapter — 55 in all. Unabridged republication of the original (1968) edition. Appendices. Bibliography. Index. 55 problems.

Basic Theory of Ordinary Differential Equations

Author: Po-Fang Hsieh,Yasutaka Sibuya

Publisher: Springer Science & Business Media

ISBN: 9780387986999

Category: Mathematics

Page: 468

View: 9717

The authors provide readers with the very basic knowledge necessary to begin research on differential equations with professional ability. The selection of topics gives readers methods and results that are applicable in a variety of different fields. Each chapter begins with a brief discussion of its contents and history and ends with a number of problems and exercises.

Ordinary Differential Equations with Applications

Author: Carmen Chicone

Publisher: Springer Science & Business Media

ISBN: 0387307699

Category: Mathematics

Page: 636

View: 7718

Based on a one-year course taught by the author to graduates at the University of Missouri, this book provides a student-friendly account of some of the standard topics encountered in an introductory course of ordinary differential equations. In a second semester, these ideas can be expanded by introducing more advanced concepts and applications. A central theme in the book is the use of Implicit Function Theorem, while the latter sections of the book introduce the basic ideas of perturbation theory as applications of this Theorem. The book also contains material differing from standard treatments, for example, the Fiber Contraction Principle is used to prove the smoothness of functions that are obtained as fixed points of contractions. The ideas introduced in this section can be extended to infinite dimensions.

Introduction to Linear Algebra and Differential Equations

Author: John W. Dettman

Publisher: Courier Corporation

ISBN: 9780486651910

Category: Mathematics

Page: 404

View: 1123

Excellent introductory text for students with one year of calculus. Topics include complex numbers, determinants, orthonormal bases, symmetric and hermitian matrices, first order non-linear equations, linear differential equations, Laplace transforms, Bessel functions and boundary-value problems. Includes 48 black-and-white illustrations. Exercises with solutions. Index.