**Author**: Om P. Chug; P.N. Gupta; R.S. Dahiya

**Publisher:** Laxmi Publications

**ISBN:**

**Category:**

**Page:** 530

**View:** 391

This book strives to provide a concise and yet comprehensive cover-age of all major mathematical methods in engineering. Topics in-clude advanced calculus, ordinary and partial differential equations, complex variables, vector and tensor analysis, calculus of variations, integral transforms, integral equations, numerical methods, and prob-ability and statistics. Application topics consist of linear elasticity, harmonic motions, chaos, and reaction-diffusion systems. . This book can serve as a textbook in engineering mathematics, mathematical modelling and scientific computing. This book is organised into 19 chapters. Chapters 1-14 introduce various mathematical methods, Chapters 15-18 concern the numeri-cal methods, and Chapter 19 introduces the probability and statistics.

This introductory text presents ordinary differential equations with a modern approach to mathematical modelling in a one semester module of 20–25 lectures. Presents ordinary differential equations with a modern approach to mathematical modelling Discusses linear differential equations of second order, miscellaneous solution techniques, oscillatory motion and laplace transform, among other topics Includes self-study projects and extended tutorial solutions

Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

Based on a translation of the 6th edition of Gewöhnliche Differentialgleichungen by Wolfgang Walter, this edition includes additional treatments of important subjects not found in the German text as well as material that is seldom found in textbooks, such as new proofs for basic theorems. This unique feature of the book calls for a closer look at contents and methods with an emphasis on subjects outside the mainstream. Exercises, which range from routine to demanding, are dispersed throughout the text and some include an outline of the solution. Applications from mechanics to mathematical biology are included and solutions of selected exercises are found at the end of the book. It is suitable for mathematics, physics, and computer science graduate students to be used as collateral reading and as a reference source for mathematicians. Readers should have a sound knowledge of infinitesimal calculus and be familiar with basic notions from linear algebra; functional analysis is developed in the text when needed.

For over 300 years, differential equations have served as an essential tool for describing and analyzing problems in many scientific disciplines. This carefully-written textbook provides an introduction to many of the important topics associated with ordinary differential equations. Unlike most textbooks on the subject, this text includes nonstandard topics such as perturbation methods and differential equations and Mathematica. In addition to the nonstandard topics, this text also contains contemporary material in the area as well as its classical topics. This second edition is updated to be compatible with Mathematica, version 7.0. It also provides 81 additional exercises, a new section in Chapter 1 on the generalized logistic equation, an additional theorem in Chapter 2 concerning fundamental matrices, and many more other enhancements to the first edition. This book can be used either for a second course in ordinary differential equations or as an introductory course for well-prepared students. The prerequisites for this book are three semesters of calculus and a course in linear algebra, although the needed concepts from linear algebra are introduced along with examples in the book. An undergraduate course in analysis is needed for the more theoretical subjects covered in the final two chapters.

Designed for engineering graduate students, this book connects basic mathematics to a variety of methods used in engineering problems.