Handbook of Mathematical Logic

Author: J. Barwise

Publisher: Elsevier

ISBN: 9780080933641

Category: Mathematics

Page: 1164

View: 2847

The handbook is divided into four parts: model theory, set theory, recursion theory and proof theory. Each of the four parts begins with a short guide to the chapters that follow. Each chapter is written for non-specialists in the field in question. Mathematicians will find that this book provides them with a unique opportunity to apprise themselves of developments in areas other than their own.

The Foundations of Mathematics in the Theory of Sets

Author: John P. Mayberry

Publisher: Cambridge University Press

ISBN: 9780521770347

Category: Mathematics

Page: 424

View: 6608

This 2001 book will appeal to mathematicians and philosophers interested in the foundations of mathematics.

Relation Algebras by Games

Author: Robin Hirsch,Ian Hodkinson

Publisher: Gulf Professional Publishing

ISBN: 9780444509321

Category: Mathematics

Page: 691

View: 5141

In part 2, games are introduced, and used to axiomatise various classes of algebras. Part 3 discusses approximations to representability, using bases, relation algebra reducts, and relativised representations. Part 4 presents some constructions of relation algebras, including Monk algebras and the 'rainbow construction', and uses them to show that various classes of representable algebras are non-finitely axiomatisable or even non-elementary. Part 5 shows that the representability problem for finite relation algebras is undecidable, and then in contrast proves some finite base property results. Part 6 contains a condensed summary of the book, and a list of problems. There are more than 400 exercises. P The book is generally self-contained on relation algebras and on games, and introductory text is scattered throughout. Some familiarity with elementary aspects of first-order logic and set theory is assumed, though many of the definitions are given.-

Handbook of Proof Theory

Author: S.R. Buss

Publisher: Elsevier

ISBN: 9780080533186

Category: Mathematics

Page: 810

View: 8244

This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth. The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.

Theory of Relations

Author: R. Fraïssé

Publisher: Elsevier

ISBN: 0080960413

Category: Mathematics

Page: 410

View: 1267

The first part of this book concerns the present state of the theory of chains (= total or linear orderings), in connection with some refinements of Ramsey's theorem, due to Galvin and Nash-Williams. This leads to the fundamental Laver's embeddability theorem for scattered chains, using Nash-Williams' better quasi-orderings, barriers and forerunning. The second part (chapters 9 to 12) extends to general relations the main notions and results from order-type theory. An important connection appears with permutation theory (Cameron, Pouzet, Livingstone and Wagner) and with logics (existence criterion of Pouzet-Vaught for saturated relations). The notion of bound of a relation (due to the author) leads to important calculus of thresholds by Frasnay, Hodges, Lachlan and Shelah. The redaction systematically goes back to set-theoretic axioms and precise definitions (such as Tarski's definition for finite sets), so that for each statement it is mentioned either that ZF axioms suffice, or what other axioms are needed (choice, continuum, dependent choice, ultrafilter axiom, etc.).

Introduction to Logic

and to the Methodology of Deductive Sciences

Author: Alfred Tarski

Publisher: Courier Corporation

ISBN: 0486318893

Category: Mathematics

Page: 272

View: 2879

This classic undergraduate treatment examines the deductive method in its first part and explores applications of logic and methodology in constructing mathematical theories in its second part. Exercises appear throughout.

Undecidable Theories

Author: Alfred Tarski,Andrzej Mostowski,Raphael Mitchel Robinson

Publisher: Elsevier

ISBN: 0444533788

Category: Decidability (Mathematical logic)

Page: 98

View: 2876

Principia Mathematica

Author: Alfred North Whitehead,Bertrand Russell

Publisher: N.A

ISBN: N.A

Category: Logic, Symbolic and mathematical

Page: N.A

View: 349

Zermelo’s Axiom of Choice

Its Origins, Development, and Influence

Author: G.H. Moore

Publisher: Springer Science & Business Media

ISBN: 1461394783

Category: Mathematics

Page: 412

View: 7945

This book grew out of my interest in what is common to three disciplines: mathematics, philosophy, and history. The origins of Zermelo's Axiom of Choice, as well as the controversy that it engendered, certainly lie in that intersection. Since the time of Aristotle, mathematics has been concerned alternately with its assumptions and with the objects, such as number and space, about which those assumptions were made. In the historical context of Zermelo's Axiom, I have explored both the vagaries and the fertility of this alternating concern. Though Zermelo's research has provided the focus for this book, much of it is devoted to the problems from which his work originated and to the later developments which, directly or indirectly, he inspired. A few remarks about format are in order. In this book a publication is indicated by a date after a name; so Hilbert 1926, 178 refers to page 178 of an article written by Hilbert, published in 1926, and listed in the bibliography.

Mathematical Methods in Linguistics

Author: Barbara B.H. Partee,A.G. ter Meulen,R. Wall

Publisher: Springer Science & Business Media

ISBN: 9400922132

Category: Language Arts & Disciplines

Page: 666

View: 3555

Elementary set theory accustoms the students to mathematical abstraction, includes the standard constructions of relations, functions, and orderings, and leads to a discussion of the various orders of infinity. The material on logic covers not only the standard statement logic and first-order predicate logic but includes an introduction to formal systems, axiomatization, and model theory. The section on algebra is presented with an emphasis on lattices as well as Boolean and Heyting algebras. Background for recent research in natural language semantics includes sections on lambda-abstraction and generalized quantifiers. Chapters on automata theory and formal languages contain a discussion of languages between context-free and context-sensitive and form the background for much current work in syntactic theory and computational linguistics. The many exercises not only reinforce basic skills but offer an entry to linguistic applications of mathematical concepts. For upper-level undergraduate students and graduate students in theoretical linguistics, computer-science students with interests in computational linguistics, logic programming and artificial intelligence, mathematicians and logicians with interests in linguistics and the semantics of natural language.

Set Theory and its Philosophy

A Critical Introduction

Author: Michael Potter

Publisher: Clarendon Press

ISBN: 0191556432

Category: Philosophy

Page: 360

View: 6033

Michael Potter presents a comprehensive new philosophical introduction to set theory. Anyone wishing to work on the logical foundations of mathematics must understand set theory, which lies at its heart. Potter offers a thorough account of cardinal and ordinal arithmetic, and the various axiom candidates. He discusses in detail the project of set-theoretic reduction, which aims to interpret the rest of mathematics in terms of set theory. The key question here is how to deal with the paradoxes that bedevil set theory. Potter offers a strikingly simple version of the most widely accepted response to the paradoxes, which classifies sets by means of a hierarchy of levels. What makes the book unique is that it interweaves a careful presentation of the technical material with a penetrating philosophical critique. Potter does not merely expound the theory dogmatically but at every stage discusses in detail the reasons that can be offered for believing it to be true. Set Theory and its Philosophy is a key text for philosophy, mathematical logic, and computer science.

Practical Foundations of Mathematics

Author: Paul Taylor

Publisher: Cambridge University Press

ISBN: 9780521631075

Category: Mathematics

Page: 572

View: 2233

Practical Foundations collects the methods of construction of the objects of twentieth-century mathematics. Although it is mainly concerned with a framework essentially equivalent to intuitionistic Zermelo-Fraenkel logic, the book looks forward to more subtle bases in categorical type theory and the machine representation of mathematics. Each idea is illustrated by wide-ranging examples, and followed critically along its natural path, transcending disciplinary boundaries between universal algebra, type theory, category theory, set theory, sheaf theory, topology and programming. Students and teachers of computing, mathematics and philosophy will find this book both readable and of lasting value as a reference work.

The Foundations of Mathematics

Author: Kenneth Kunen

Publisher: N.A

ISBN: 9781904987147

Category: Mathematics

Page: 251

View: 8257

Mathematical logic grew out of philosophical questions regarding the foundations of mathematics, but logic has now outgrown its philosophical roots, and has become an integral part of mathematics in general. This book is designed for students who plan to specialize in logic, as well as for those who are interested in the applications of logic to other areas of mathematics. Used as a text, it could form the basis of a beginning graduate-level course. There are three main chapters: Set Theory, Model Theory, and Recursion Theory. The Set Theory chapter describes the set-theoretic foundations of all of mathematics, based on the ZFC axioms. It also covers technical results about the Axiom of Choice, well-orderings, and the theory of uncountable cardinals. The Model Theory chapter discusses predicate logic and formal proofs, and covers the Completeness, Compactness, and Lowenheim-Skolem Theorems, elementary submodels, model completeness, and applications to algebra. This chapter also continues the foundational issues begun in the set theory chapter. Mathematics can now be viewed as formal proofs from ZFC. Also, model theory leads to models of set theory. This includes a discussion of absoluteness, and an analysis of models such as H( ) and R( ). The Recursion Theory chapter develops some basic facts about computable functions, and uses them to prove a number of results of foundational importance; in particular, Church's theorem on the undecidability of logical consequence, the incompleteness theorems of Godel, and Tarski's theorem on the non-definability of truth.

Roads to Infinity

The Mathematics of Truth and Proof

Author: John C. Stillwell

Publisher: CRC Press

ISBN: 1439865507

Category: Mathematics

Page: 250

View: 1432

Winner of a CHOICE Outstanding Academic Title Award for 2011! This book offers an introduction to modern ideas about infinity and their implications for mathematics. It unifies ideas from set theory and mathematical logic, and traces their effects on mainstream mathematical topics of today, such as number theory and combinatorics. The treatment is historical and partly informal, but with due attention to the subtleties of the subject. Ideas are shown to evolve from natural mathematical questions about the nature of infinity and the nature of proof, set against a background of broader questions and developments in mathematics. A particular aim of the book is to acknowledge some important but neglected figures in the history of infinity, such as Post and Gentzen, alongside the recognized giants Cantor and Gödel.

A First Course in Mathematical Logic and Set Theory

Author: Michael L. O'Leary

Publisher: John Wiley & Sons

ISBN: 1118547918

Category: Mathematics

Page: 480

View: 2893

A mathematical introduction to the theory and applications of logic and set theory with an emphasis on writing proofs Highlighting the applications and notations of basic mathematical concepts within the framework of logic and set theory, A First Course in Mathematical Logic and Set Theory introduces how logic is used to prepare and structure proofs and solve more complex problems. The book begins with propositional logic, including two-column proofs and truth table applications, followed by first-order logic, which provides the structure for writing mathematical proofs. Set theory is then introduced and serves as the basis for defining relations, functions, numbers, mathematical induction, ordinals, and cardinals. The book concludes with a primer on basic model theory with applications to abstract algebra. A First Course in Mathematical Logic and Set Theory also includes: Section exercises designed to show the interactions between topics and reinforce the presented ideas and concepts Numerous examples that illustrate theorems and employ basic concepts such as Euclid’s lemma, the Fibonacci sequence, and unique factorization Coverage of important theorems including the well-ordering theorem, completeness theorem, compactness theorem, as well as the theorems of Löwenheim–Skolem, Burali-Forti, Hartogs, Cantor–Schröder–Bernstein, and König An excellent textbook for students studying the foundations of mathematics and mathematical proofs, A First Course in Mathematical Logic and Set Theory is also appropriate for readers preparing for careers in mathematics education or computer science. In addition, the book is ideal for introductory courses on mathematical logic and/or set theory and appropriate for upper-undergraduate transition courses with rigorous mathematical reasoning involving algebra, number theory, or analysis.

Categorical Logic and Type Theory

Author: B. Jacobs

Publisher: Elsevier

ISBN: 9780080528700

Category: Mathematics

Page: 778

View: 9702

This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.

Philosophy of Mathematics

Selected Readings

Author: Paul Benacerraf,Hilary Putnam

Publisher: Cambridge University Press

ISBN: 1107268133

Category: Science

Page: N.A

View: 8997

The twentieth century has witnessed an unprecedented 'crisis in the foundations of mathematics', featuring a world-famous paradox (Russell's Paradox), a challenge to 'classical' mathematics from a world-famous mathematician (the 'mathematical intuitionism' of Brouwer), a new foundational school (Hilbert's Formalism), and the profound incompleteness results of Kurt Gödel. In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Gödel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.

The Lambda Calculus

Its Syntax and Semantics

Author: H.P. Barendregt

Publisher: Elsevier

ISBN: 9780080933757

Category: Mathematics

Page: 654

View: 7790

The revised edition contains a new chapter which provides an elegant description of the semantics. The various classes of lambda calculus models are described in a uniform manner. Some didactical improvements have been made to this edition. An example of a simple model is given and then the general theory (of categorical models) is developed. Indications are given of those parts of the book which can be used to form a coherent course.

The Axiom of Choice

Author: Thomas J. Jech

Publisher: N.A

ISBN: N.A

Category: Philosophy

Page: 202

View: 7494