Theories of Computability

Author: Nicholas Pippenger

Publisher: Cambridge University Press

ISBN: 9780521553803

Category: Computers

Page: 251

View: 1508

A mathematically sophisticated introduction to Turing's theory, Boolean functions, automata, and formal languages.

Handbook of Computability Theory

Author: E.R. Griffor

Publisher: Elsevier

ISBN: 9780080533049

Category: Mathematics

Page: 724

View: 9867

The chapters of this volume all have their own level of presentation. The topics have been chosen based on the active research interest associated with them. Since the interest in some topics is older than that in others, some presentations contain fundamental definitions and basic results while others relate very little of the elementary theory behind them and aim directly toward an exposition of advanced results. Presentations of the latter sort are in some cases restricted to a short survey of recent results (due to the complexity of the methods and proofs themselves). Hence the variation in level of presentation from chapter to chapter only reflects the conceptual situation itself. One example of this is the collective efforts to develop an acceptable theory of computation on the real numbers. The last two decades has seen at least two new definitions of effective operations on the real numbers.

The Foundations of Computability Theory

Author: Borut Robič

Publisher: Springer

ISBN: 3662448084

Category: Computers

Page: 331

View: 1265

This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism; in Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability; in Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science.

Computability Theory

Author: S. Barry Cooper

Publisher: CRC Press

ISBN: 1351991965

Category: Mathematics

Page: 420

View: 4547

Computability theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the 1930s. This theory includes a wide spectrum of topics, such as the theory of reducibilities and their degree structures, computably enumerable sets and their automorphisms, and subrecursive hierarchy classifications. Recent work in computability theory has focused on Turing definability and promises to have far-reaching mathematical, scientific, and philosophical consequences. Written by a leading researcher, Computability Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced topics not to be found elsewhere in the literature at this level. The book includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. The final chapter explores a variety of computability applications to mathematics and science. Computability Theory is an invaluable text, reference, and guide to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable and lively way.

Algorithmic Randomness and Complexity

Author: Rodney G. Downey,Denis R. Hirschfeldt

Publisher: Springer Science & Business Media

ISBN: 0387684417

Category: Computers

Page: 855

View: 4830

Computability and complexity theory are two central areas of research in theoretical computer science. This book provides a systematic, technical development of "algorithmic randomness" and complexity for scientists from diverse fields.

Higher-Order Computability

Author: John Longley,Dag Normann

Publisher: Springer

ISBN: 3662479923

Category: Computers

Page: 571

View: 8679

This book offers a self-contained exposition of the theory of computability in a higher-order context, where 'computable operations' may themselves be passed as arguments to other computable operations. The subject originated in the 1950s with the work of Kleene, Kreisel and others, and has since expanded in many different directions under the influence of workers from both mathematical logic and computer science. The ideas of higher-order computability have proved valuable both for elucidating the constructive content of logical systems, and for investigating the expressive power of various higher-order programming languages. In contrast to the well-known situation for first-order functions, it turns out that at higher types there are several different notions of computability competing for our attention, and each of these has given rise to its own strand of research. In this book, the authors offer an integrated treatment that draws together many of these strands within a unifying framework, revealing not only the range of possible computability concepts but the relationships between them. The book will serve as an ideal introduction to the field for beginning graduate students, as well as a reference for advanced researchers

Business Research Methodology (With Cd)

Author: Srivastava

Publisher: Tata McGraw-Hill Education

ISBN: 1259081907

Category: Business

Page: 210

View: 8166

Classic graduate-level introduction to theory of computability. Discusses general theory of computability, computable functions, operations on computable functions, Turing machines self-applied, unsolvable decision problems, applications of general theory, mathematical logic, Kleene hierarchy, more.

Models of Computation

An Introduction to Computability Theory

Author: Maribel Fernández

Publisher: Springer Science & Business Media

ISBN: 9781848824348

Category: Computers

Page: 184

View: 5139

A Concise Introduction to Computation Models and Computability Theory provides an introduction to the essential concepts in computability, using several models of computation, from the standard Turing Machines and Recursive Functions, to the modern computation models inspired by quantum physics. An in-depth analysis of the basic concepts underlying each model of computation is provided. Divided into two parts, the first highlights the traditional computation models used in the first studies on computability: - Automata and Turing Machines; - Recursive functions and the Lambda-Calculus; - Logic-based computation models. and the second part covers object-oriented and interaction-based models. There is also a chapter on concurrency, and a final chapter on emergent computation models inspired by quantum mechanics. At the end of each chapter there is a discussion on the use of computation models in the design of programming languages.

Computability Theory

An Introduction to Recursion Theory

Author: Herbert B. Enderton

Publisher: Academic Press

ISBN: 9780123849595

Category: Computers

Page: 192

View: 3060

Computability Theory: An Introduction to Recursion Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced topics not to be found elsewhere in the literature at this level. The text includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. The final chapter explores a variety of computability applications to mathematics and science. Computability Theory is an invaluable text, reference, and guide to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable way. Frequent historical information presented throughout More extensive motivation for each of the topics than other texts currently available Connects with topics not included in other textbooks, such as complexity theory

The Incomputable

Journeys Beyond the Turing Barrier

Author: S. Barry Cooper,Mariya I. Soskova

Publisher: Springer

ISBN: 3319436694

Category: Computers

Page: 292

View: 538

This book questions the relevance of computation to the physical universe. Our theories deliver computational descriptions, but the gaps and discontinuities in our grasp suggest a need for continued discourse between researchers from different disciplines, and this book is unique in its focus on the mathematical theory of incomputability and its relevance for the real world. The core of the book consists of thirteen chapters in five parts on extended models of computation; the search for natural examples of incomputable objects; mind, matter, and computation; the nature of information, complexity, and randomness; and the mathematics of emergence and morphogenesis. This book will be of interest to researchers in the areas of theoretical computer science, mathematical logic, and philosophy.

Computability Theory

An Introduction

Author: Neil D. Jones

Publisher: Academic Press

ISBN: 1483218481

Category: Mathematics

Page: 168

View: 1025

Computability Theory: An Introduction provides information pertinent to the major concepts, constructions, and theorems of the elementary theory of computability of recursive functions. This book provides mathematical evidence for the validity of the Church–Turing thesis. Organized into six chapters, this book begins with an overview of the concept of effective process so that a clear understanding of the effective computability of partial and total functions is obtained. This text then introduces a formal development of the equivalence of Turing machine computability, enumerability, and decidability with other formulations. Other chapters consider the formulas of the predicate calculus, systems of recursion equations, and Post's production systems. This book discusses as well the fundamental properties of the partial recursive functions and the recursively enumerable sets. The final chapter deals with different formulations of the basic ideas of computability that are equivalent to Turing-computability. This book is a valuable resource for undergraduate or graduate students.

Theory of Fuzzy Computation

Author: Apostolos Syropoulos

Publisher: Springer Science & Business Media

ISBN: 1461483794

Category: Mathematics

Page: 162

View: 5604

The book provides the first full length exploration of fuzzy computability. It describes the notion of fuzziness and present the foundation of computability theory. It then presents the various approaches to fuzzy computability. This text provides a glimpse into the different approaches in this area, which is important for researchers in order to have a clear view of the field. It contains a detailed literature review and the author includes all proofs to make the presentation accessible. Ideas for future research and explorations are also provided. Students and researchers in computer science and mathematics will benefit from this work.​

Computability, Complexity, and Languages

Fundamentals of Theoretical Computer Science

Author: Martin D. Davis,Elaine J. Weyuker

Publisher: Academic Press

ISBN: 1483264580

Category: Reference

Page: 446

View: 5727

Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science provides an introduction to the various aspects of theoretical computer science. Theoretical computer science is the mathematical study of models of computation. This text is composed of five parts encompassing 17 chapters, and begins with an introduction to the use of proofs in mathematics and the development of computability theory in the context of an extremely simple abstract programming language. The succeeding parts demonstrate the performance of abstract programming language using a macro expansion technique, along with presentations of the regular and context-free languages. Other parts deal with the aspects of logic that are important for computer science and the important theory of computational complexity, as well as the theory of NP-completeness. The closing part introduces the advanced recursion and polynomial-time computability theories, including the priority constructions for recursively enumerable Turing degrees. This book is intended primarily for undergraduate and graduate mathematics students.

Computability Theory

Author: Rebecca Weber

Publisher: American Mathematical Soc.

ISBN: 082187392X

Category: Mathematics

Page: 203

View: 9114

What can we compute--even with unlimited resources? Is everything within reach? Or are computations necessarily drastically limited, not just in practice, but theoretically? These questions are at the heart of computability theory. The goal of this book is to give the reader a firm grounding in the fundamentals of computability theory and an overview of currently active areas of research, such as reverse mathematics and algorithmic randomness. Turing machines and partial recursive functions are explored in detail, and vital tools and concepts including coding, uniformity, and diagonalization are described explicitly. From there the material continues with universal machines, the halting problem, parametrization and the recursion theorem, and thence to computability for sets, enumerability, and Turing reduction and degrees. A few more advanced topics round out the book before the chapter on areas of research. The text is designed to be self-contained, with an entire chapter of preliminary material including relations, recursion, induction, and logical and set notation and operators. That background, along with ample explanation, examples, exercises, and suggestions for further reading, make this book ideal for independent study or courses with few prerequisites.


An Introduction to Recursive Function Theory

Author: Nigel Cutland

Publisher: Cambridge University Press

ISBN: 9780521294652

Category: Computers

Page: 251

View: 7259

This introduction to recursive theory computability begins with a mathematical characterization of computable functions, develops the mathematical theory and includes a full discussion of noncomputability and undecidability. Later chapters move on to more advanced topics such as degrees of unsolvability and Gödel's Incompleteness Theorem.

Turing Computability

Theory and Applications

Author: Robert I. Soare

Publisher: Springer

ISBN: 3642319335

Category: Computers

Page: 263

View: 5736

Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic. The author presents the subject as an art to be practiced, and an art in the aesthetic sense of inherent beauty which all mathematicians recognize in their subject. Part I gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic. Part II includes the study of computably open and closed sets of reals and basis and nonbasis theorems for effectively closed sets. Part III covers minimal Turing degrees. Part IV is an introduction to games and their use in proving theorems. Finally, Part V offers a short history of computability theory. The author has honed the content over decades according to feedback from students, lecturers, and researchers around the world. Most chapters include exercises, and the material is carefully structured according to importance and difficulty. The book is suitable for advanced undergraduate and graduate students in computer science and mathematics and researchers engaged with computability and mathematical logic.

Computability and Logic

Author: George S. Boolos,John P. Burgess,Richard C. Jeffrey

Publisher: Cambridge University Press

ISBN: 110704927X

Category: Philosophy

Page: N.A

View: 7065

Computability and Logic has become a classic because of its accessibility to students without a mathematical background and because it covers not simply the staple topics of an intermediate logic course, such as Godel's incompleteness theorems, but also a large number of optional topics, from Turing's theory of computability to Ramsey's theorem. This 2007 fifth edition has been thoroughly revised by John Burgess. Including a selection of exercises, adjusted for this edition, at the end of each chapter, it offers a simpler treatment of the representability of recursive functions, a traditional stumbling block for students on the way to the Godel incompleteness theorems. This updated edition is also accompanied by a website as well as an instructor's manual.

Computability Theory and Its Applications

Current Trends and Open Problems : Proceedings of a 1999 AMS-IMS-SIAM Joint Summer Research Conference, Computability Theory and Applications, June 13-17, 1999, University of Colorado, Boulder

Author: Peter Cholak

Publisher: American Mathematical Soc.

ISBN: 0821819224

Category: Mathematics

Page: 320

View: 2038

This collection of articles presents a snapshot of the status of computability theory at the end of the millennium and a list of fruitful directions for future research. The papers represent the works of experts in the field who were invited speakers at the AMS-IMS-SIAM Joint Summer Conference on Computability Theory and Applications held at the University of Colorado (Boulder). The conference focused on open problems in computability theory and on some related areas in which the ideas, methods, and/or results of computability theory play a role. Some presentations are narrowly focused; others cover a wider area. Topics included from ``pure'' computability theory are the computably enumerable degrees (M. Lerman), the computably enumerable sets (P. Cholak, R. Soare), definability issues in the c.e. and Turing degrees (A. Nies, R. Shore) and other degree structures (M. Arslanov, S. Badaev and S. Goncharov, P. Odifreddi, A. Sorbi). The topics involving relations between computability and other areas of logic and mathematics are reverse mathematics and proof theory (D. Cenzer and C. Jockusch, C. Chong and Y. Yang, H. Friedman and S. Simpson), set theory (R. Dougherty and A. Kechris, M. Groszek, T. Slaman) and computable mathematics and model theory (K. Ambos-Spies and A. Kucera, R. Downey and J. Remmel, S. Goncharov and B. Khoussainov, J. Knight, M. Peretyat'kin, A. Shlapentokh).

Computability and Complexity

From a Programming Perspective

Author: Neil D. Jones

Publisher: MIT Press

ISBN: 9780262100649

Category: Computers

Page: 466

View: 6963

"Neil Jones is one of the precious few computer scientists with great expertise and leadership roles in both formal methods and complexity. This makes his book especially valuable." -- Yuri Gurevich, Professor of Computer Science, University of Michigan Computability and complexity theory should be of central concern to practitioners as well as theorists. Unfortunately, however, the field is known for its impenetrability. Neil Jones's goal as an educator and author is to build a bridge between computability and complexity theory and other areas of computer science, especially programming. In a shift away from the Turing machine- and Gö del number-oriented classical approaches, Jones uses concepts familiar from programming languages to make computability and complexity more accessible to computer scientists and more applicable to practical programming problems. According to Jones, the fields of computability and complexity theory, as well as programming languages and semantics, have a great deal to offer each other. Computability and complexity theory have a breadth, depth, and generality not often seen in programming languages. The programming language community, meanwhile, has a firm grasp of algorithm design, presentation, and implementation. In addition, programming languages sometimes provide computational models that are more realistic in certain crucial aspects than traditional models. New results in the book include a proof that constant time factors do matter for its programming-oriented model of computation. (In contrast, Turing machines have a counterintuitive "constant speedup" property: that almost anyprogram can be made to run faster, by any amount. Its proof involves techniques irrelevant to practice.) Further results include simple characterizations in programming terms of the central complexity classes PTIME and LOGSPACE, and a new approach to complete problems for NLOGSPACE, PTIME, NPTIME, and PSPACE, uniformly based on Boolean programs. "Foundations of Computing series"