**Author**: J. Scott Long

**Publisher:** Stata Press

**ISBN:** 9781597180474

**Category:** Mathematics

**Page:** 379

**View:** 8422

The Workflow of Data Analysis Using Stata, by J. Scott Long, is an essential productivity tool for data analysts. Long presents lessons gained from his experience and demonstrates how to design and implement efficient workflows for both one-person projects and team projects. After introducing workflows and explaining how a better workflow can make it easier to work with data, Long describes planning, organizing, and documenting your work. He then introduces how to write and debug Stata do-files and how to use local and global macros. After a discussion of conventions that greatly simplify data analysis the author covers cleaning, analyzing, and protecting data.

Using simple language and illustrative examples, this book comprehensively covers data management tasks that bridge the gap between raw data and statistical analysis. Rather than focus on clusters of commands, the author takes a modular approach that enables readers to quickly identify and implement the necessary task without having to access background information first. Each section in the chapters presents a self-contained lesson that illustrates a particular data management task via examples, such as creating data variables and automating error checking. The text also discusses common pitfalls and how to avoid them and provides strategic data management advice. Ideal for both beginning statisticians and experienced users, this handy book helps readers solve problems and learn comprehensive data management skills.

This book is an accessible introduction to quantitative data analysis, concentrating on the key issues facing those new to research, such as how to decide which statistical procedure is suitable, and how to interpret the subsequent results. Each chapter includes illustrative examples and a set of exercises that allows readers to test their understanding of the topic. The book, written for graduate students in the social sciences, public health, and education, offers a practical approach to making sociological sense out of a body of quantitative data. The book also will be useful to more experienced researchers who need a readily accessible handbook on quantitative methods. The author has posted stata files, updates and data sets at his website http://tinyurl.com/Treiman-stata-files-data-sets.

In this second edition of An Introduction to Stata Programming, the author introduces concepts by providing the background and importance for the topic, presents common uses and examples, then concludes with larger, more applied examples referred to as "cookbook recipes." This is a great reference for anyone who wants to learn Stata programming. For those learning, the author assumes familiarity with Stata and gradually introduces more advanced programming tools. For the more advanced Stata programmer, the book introduces Stata's Mata programming language and optimization routines.

After reviewing the linear regression model and introducing maximum likelihood estimation, Long extends the binary logit and probit models, presents multinomial and conditioned logit models and describes models for sample selection bias.

This book is an easily accessible and comprehensive guide which helps make sound statistical decisions, perform analyses, and interpret the results quickly using Stata. It includes advanced coverage of ANOVA, factor, and cluster analyses in Stata, as well as essential regression and descriptive statistics. It is aimed at those wishing to know more about the process, data management, and most commonly used methods in market research using Stata. The book offers readers an overview of the entire market research process from asking market research questions to collecting and analyzing data by means of quantitative methods. It is engaging, hands-on, and includes many practical examples, tips, and suggestions that help readers apply and interpret quantitative methods, such as regression, factor, and cluster analysis. These methods help researchers provide companies with useful insights.

A unified treatment of the most useful models for categorical and limited dependent variables (CLDVs) is provided in this book. Throughout, the links among the models are made explicit, and common methods of derivation, interpretation and testing are applied. In addition, the author explains how models relate to linear regression models whenever possible.

Designed to assist those working in health research, An Introduction to Stata for Health Researchers, explains how to maximize the versatile Strata program for data management, statistical analysis, and graphics for research. The first nine chapters are devoted to becoming familiar with Stata and the essentials of effective data management. The text is also a valuable companion reference for more advanced users. It covers a host of useful applications for health researchers including the analysis of stratified data via epitab and regression models; linear, logistic, and Poisson regression; survival analysis including Cox regression, standardized rates, and correlation/ROC analysis of measurements.

Clear, intuitive and written with the social science student in mind, this book represents the ideal combination of statistical theory and practice. It focuses on questions that can be answered using statistics and addresses common themes and problems in a straightforward, easy-to-follow manner. The book carefully combines the conceptual aspects of statistics with detailed technical advice providing both the ‘why’ of statistics and the ‘how’. Built upon a variety of engaging examples from across the social sciences it provides a rich collection of statistical methods and models. Students are encouraged to see the impact of theory whilst simultaneously learning how to manipulate software to meet their needs. The book also provides: Original case studies and data sets Practical guidance on how to run and test models in Stata Downloadable Stata programmes created to work alongside chapters A wide range of detailed applications using Stata Step-by-step notes on writing the relevant code. This excellent text will give anyone doing statistical research in the social sciences the theoretical, technical and applied knowledge needed to succeed.

This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.

Provides an introduction to Stata with an emphasis on data management, linear regression, logistic modeling, and using programs to automate repetitive tasks. This book gives an introduction to the Stata interface and then proceeds with a discussion of Stata syntax and simple programming tools like for each loops.

Michael Mitchell's Interpreting and Visualizing Regression Models Using Stata is a clear treatment of how to carefully present results from model-fitting in a wide variety of settings. It is a boon to anyone who has to present the tangible meaning of a complex model in a clear fashion, regardless of the audience. As an example, many experienced researchers start to squirm when asked to give a simple explanation of the applied meaning of interactions in nonlinear models such as logistic regression. The tools in Mitchell's book make this task much more enjoyable and comprehensible. Mitchell starts with simple linear regression (which is simple in all ways), and then adds polynomials and discontinuities. This is followed by 2-way and 3-way interaction until interpretation of coefficients through words is difficult. By careful use of Stata's marginsplot command, Mitchell shows how well graphs can be used to show effects. He also includes careful verbal interpretation of coefficients to make communications complete. He then extends the methods from linear regression to various types of nonlinear regression, such as multilevel or survival models. A significant difference between this book and most others on regression models is that Mitchell spends quite some time on fitting and visualizing discontinuous models' models where the outcome can change value suddenly at thresholds. Such models are natural in settings such as education and policy evaluation, where graduation or policy changes can make sudden changes in income or revenue. This book is a worthwhile addition to the library of anyone involved in statistical consulting, teaching, or collaborative applied statistical environments.

Whether you are new to Stata graphics or a seasoned veteran, A Visual Guide to Stata Graphics, Second Edition will teach you how to use Stata to make publication-quality graphs that will stand out and enhance your statistical results. With over 900 illustrated examples and quick-reference tabs, this book quickly guides you to the information you need for creating and customizing high-quality graphs for any types of statistical data.

Written in a friendly, how-to manner, Social Experiments provides a basic understanding of how to design and implement social experiments and how to interpret their results. Through illustrative examples, the author provides a grounding in the experimental method and gives advice on: designs that best address alternative policy questions; maximizing the precision of the estimates; implementing the experiment in the field; data collection; estimating and interpreting program impacts, costs, and benefits; dealing with biases; and the use and misuse of experimental results in the policy process.

Engaging and accessible to students from a wide variety of mathematical backgrounds, Statistics Using Stata combines the teaching of statistical concepts with the acquisition of the popular Stata software package. It closely aligns Stata commands with numerous examples based on real data, enabling students to develop a deep understanding of statistics in a way that reflects statistical practice. Capitalizing on the fact that Stata has both a menu-driven 'point and click' and program syntax interface, the text guides students effectively from the comfortable 'point and click' environment to the beginnings of statistical programming. Its comprehensive coverage of essential topics gives instructors flexibility in curriculum planning and provides students with more advanced material to prepare them for future work. Online resources - including complete solutions to exercises, PowerPoint slides, and Stata syntax (do-files) for each chapter - allow students to review independently and adapt codes to solve new problems, reinforcing their programming skills.

Maximum Likelihood Estimation with Stata, Fourth Edition is written for researchers in all disciplines who need to compute maximum likelihood estimators that are not available as prepackaged routines. Readers are presumed to be familiar with Stata, but no special programming skills are assumed except in the last few chapters, which detail how to add a new estimation command to Stata. The book begins with an introduction to the theory of maximum likelihood estimation with particular attention on the practical implications for applied work. Individual chapters then describe in detail each of the four types of likelihood evaluator programs and provide numerous examples, such as logit and probit regression, Weibull regression, random-effects linear regression, and the Cox proportional hazards model. Later chapters and appendixes provide additional details about the ml command, provide checklists to follow when writing evaluators, and show how to write your own estimation commands.

Annotation SAS/IML software is a powerful tool for data analysts because it enables implementation of statistical algorithms that are not available in any SAS procedure. Rick Wicklin's Statistical Programming with SAS/IML Software is the first book to provide a comprehensive description of the software and how to use it. He presents tips and techniques that enable you to use the IML procedure and the SAS/IML Studio application efficiently. In addition to providing a comprehensive introduction to the software, the book also shows how to create and modify statistical graphs, call SAS procedures and R functions from a SAS/IML program, and implement such modern statistical techniques as simulations and bootstrap methods in the SAS/IML language. Written for data analysts working in all industries, graduate students, and consultants, Statistical Programming with SAS/IML Software includes numerous code snippets and more than 100 graphs.

Updated to reflect the new features of Stata 11, A Gentle Introduction to Stata, Third Edition continues to help new Stata users become proficient in Stata. After reading this introductory text, you will be able to enter, build, and manage a data set as well as perform fundamental statistical analyses. New to the Third Edition A new chapter on the analysis of missing data and the use of multiple-imputation methods Extensive revision of the chapter on ANOVA Additional material on the application of power analysis The book covers data management; good work habits, including the use of basic do-files; basic exploratory statistics, including graphical displays; and analyses using the standard array of basic statistical tools, such as correlation, linear and logistic regression, and parametric and nonparametric tests of location and dispersion. Rather than splitting these topics by their Stata implementation, the material on graphics and postestimation are woven into the text in a natural fashion. The author teaches Stata commands by using the menus and dialog boxes while still stressing the value of do-files. Each chapter includes exercises and real data sets are used throughout.

Learn how to perform data analysis with the R language and software environment, even if you have little or no programming experience. With the tutorials in this hands-on guide, you’ll learn how to use the essential R tools you need to know to analyze data, including data types and programming concepts. The second half of Learning R shows you real data analysis in action by covering everything from importing data to publishing your results. Each chapter in the book includes a quiz on what you’ve learned, and concludes with exercises, most of which involve writing R code. Write a simple R program, and discover what the language can do Use data types such as vectors, arrays, lists, data frames, and strings Execute code conditionally or repeatedly with branches and loops Apply R add-on packages, and package your own work for others Learn how to clean data you import from a variety of sources Understand data through visualization and summary statistics Use statistical models to pass quantitative judgments about data and make predictions Learn what to do when things go wrong while writing data analysis code

Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)