Student Solutions Manual to Accompany Partial Differential Equations: An Introduction, 2e

Author: Julie L. Levandosky,Walter A. Strauss,Steven P. Levandosky

Publisher: John Wiley & Sons

ISBN: 0470260718

Category: Mathematics

Page: 215

View: 7896

Practice partial differential equations with this student solutions manual Corresponding chapter-by-chapter with Walter Strauss's Partial Differential Equations, this student solutions manual consists of the answer key to each of the practice problems in the instructional text. Students will follow along through each of the chapters, providing practice for areas of study including waves and diffusions, reflections and sources, boundary problems, Fourier series, harmonic functions, and more. Coupled with Strauss's text, this solutions manual provides a complete resource for learning and practicing partial differential equations.

Partial Differential Equations

An Introduction

Author: Walter A. Strauss

Publisher: Wiley

ISBN: 0470054565

Category: Mathematics

Page: 464

View: 3333

Partial Differential Equations presents a balanced and comprehensive introduction to the concepts and techniques required to solve problems containing unknown functions of multiple variables. While focusing on the three most classical partial differential equations (PDEs)—the wave, heat, and Laplace equations—this detailed text also presents a broad practical perspective that merges mathematical concepts with real-world application in diverse areas including molecular structure, photon and electron interactions, radiation of electromagnetic waves, vibrations of a solid, and many more. Rigorous pedagogical tools aid in student comprehension; advanced topics are introduced frequently, with minimal technical jargon, and a wealth of exercises reinforce vital skills and invite additional self-study. Topics are presented in a logical progression, with major concepts such as wave propagation, heat and diffusion, electrostatics, and quantum mechanics placed in contexts familiar to students of various fields in science and engineering. By understanding the properties and applications of PDEs, students will be equipped to better analyze and interpret central processes of the natural world.

Partial Differential Equations

Analytical and Numerical Methods, Second Edition

Author: Mark S. Gockenbach

Publisher: SIAM

ISBN: 0898719356

Category: Mathematics

Page: 654

View: 9874

A fresh, forward-looking undergraduate textbook that treats the finite element method and classical Fourier series method with equal emphasis.

Basic Partial Differential Equations

Author: David. Bleecker,George. Csordas

Publisher: CRC Press

ISBN: 9780412067617

Category: Mathematics

Page: 768

View: 4237

Topics not usually found in books at this level include but examined in this text: the application of linear and nonlinear first-order PDEs to the evolution of population densities and to traffic shocks convergence of numerical solutions of PDEs and implementation on a computer convergence of Laplace series on spheres quantum mechanics of the hydrogen atom solving PDEs on manifolds The text requires some knowledge of calculus but none on differential equations or linear algebra.

Matched Asymptotic Expansions

Ideas and Techniques

Author: P.A. Lagerstrom

Publisher: Springer Science & Business Media

ISBN: 1475719906

Category: Mathematics

Page: 252

View: 7929

Content and Aims of this Book Earlier drafts of the manuscript of this book (James A. Boa was then coau thor) contained discussions of many methods and examples of singular perturba tion problems. The ambitious plans of covering a large number of topics were later abandoned in favor of the present goal: a thorough discussion of selected ideas and techniques used in the method of matched asymptotic expansions. Thus many problems and methods are not covered here: the method of av eraging and the related method of multiple scales are mentioned mainly to give reasons why they are not discussed further. Examples which required too sophis ticated and involved calculations, or advanced knowledge of a special field, are not treated; for instance, to the author's regret some very interesting applications to fluid mechanics had to be omitted for this reason. Artificial mathematical examples introduced to show some exotic or unexpected behavior are omitted, except when they are analytically simple and are needed to illustrate mathematical phenomena important for realistic problems. Problems of numerical analysis are not discussed.

An Introduction to Partial Differential Equations

Author: Yehuda Pinchover,Jacob Rubinstein

Publisher: Cambridge University Press

ISBN: 9780521848862

Category: Mathematics

Page: 371

View: 2342

A complete introduction to partial differential equations. A textbook aimed at students of mathematics, physics and engineering.

Introduction to Partial Differential Equations

Author: Peter J. Olver

Publisher: Springer Science & Business Media

ISBN: 3319020994

Category: Mathematics

Page: 636

View: 6566

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.

Game Theory

An Introduction

Author: E. N. Barron

Publisher: John Wiley & Sons

ISBN: 1118216938

Category: Business & Economics

Page: 555

View: 5888

This text confirms the role of mathematics in making logical and advantageous decisions and uses modern software applications to create, analyse, and implement effective decision-making models

Solution Techniques for Elementary Partial Differential Equations

Author: Christian Constanda

Publisher: CRC Press

ISBN: 9781584882572

Category: Mathematics

Page: 272

View: 1831

Of the many available texts on partial differential equations (PDEs), most are too detailed and voluminous, making them daunting to many students. In sharp contrast, Solution Techniques for Elementary Partial Differential Equations is a no-frills treatment that explains completely but succinctly some of the most fundamental solution methods for PDEs. After a brief review of elementary ODE techniques and discussions on Fourier series and Sturm-Liouville problems, the author introduces the heat, Laplace, and wave equations as mathematical models of physical phenomena. He then presents a number of solution techniques and applies them to specific initial/boundary value problems for these models. Discussion of the general second order linear equation in two independent variables follows, and finally, the method of characteristics and perturbation methods are presented. Most students seem to like concise, easily digestible explanations and worked examples that let them see the techniques in action. This text offers them both. Ideally suited for independent study and classroom tested with great success, it offers a direct, streamlined route to competence in PDE solution techniques.

Differential Equations

An Introduction to Modern Methods and Applications 3E Student Solutions Manual

Author: James R. Brannan,Boyce

Publisher: Wiley

ISBN: 9781118981252

Category: Mathematics

Page: 334

View: 320

Differential Equations

Theory, Technique and Practice, Second Edition

Author: Steven G. Krantz

Publisher: CRC Press

ISBN: 1482247046

Category: Mathematics

Page: 557

View: 6733

"Krantz is a very prolific writer. He ... creates excellent examples and problem sets." —Albert Boggess, Professor and Director of the School of Mathematics and Statistical Sciences, Arizona State University, Tempe, USA Designed for a one- or two-semester undergraduate course, Differential Equations: Theory, Technique and Practice, Second Edition educates a new generation of mathematical scientists and engineers on differential equations. This edition continues to emphasize examples and mathematical modeling as well as promote analytical thinking to help students in future studies. New to the Second Edition Improved exercise sets and examples Reorganized material on numerical techniques Enriched presentation of predator-prey problems Updated material on nonlinear differential equations and dynamical systems A new appendix that reviews linear algebra In each chapter, lively historical notes and mathematical nuggets enhance students’ reading experience by offering perspectives on the lives of significant contributors to the discipline. "Anatomy of an Application" sections highlight rich applications from engineering, physics, and applied science. Problems for review and discovery also give students some open-ended material for exploration and further learning.

An Introduction to Partial Differential Equations with MATLAB, Second Edition

Author: Matthew P. Coleman

Publisher: CRC Press

ISBN: 1439898472

Category: Mathematics

Page: 683

View: 7866

An Introduction to Partial Differential Equations with MATLAB®, Second Edition illustrates the usefulness of PDEs through numerous applications and helps students appreciate the beauty of the underlying mathematics. Updated throughout, this second edition of a bestseller shows students how PDEs can model diverse problems, including the flow of heat, the propagation of sound waves, the spread of algae along the ocean’s surface, the fluctuation in the price of a stock option, and the quantum mechanical behavior of a hydrogen atom. Suitable for a two-semester introduction to PDEs and Fourier series for mathematics, physics, and engineering students, the text teaches the equations based on method of solution. It provides both physical and mathematical motivation as much as possible. The author treats problems in one spatial dimension before dealing with those in higher dimensions. He covers PDEs on bounded domains and then on unbounded domains, introducing students to Fourier series early on in the text. Each chapter’s prelude explains what and why material is to be covered and considers the material in a historical setting. The text also contains many exercises, including standard ones and graphical problems using MATLAB. While the book can be used without MATLAB, instructors and students are encouraged to take advantage of MATLAB’s excellent graphics capabilities. The MATLAB code used to generate the tables and figures is available in an appendix and on the author’s website.

Partial Differential Equations

An Introduction to Theory and Applications

Author: Michael Shearer,Rachel Levy

Publisher: Princeton University Press

ISBN: 140086660X

Category: Mathematics

Page: 288

View: 306

This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors

An Introduction to Mechanics

Author: Daniel Kleppner,Robert Kolenkow

Publisher: Cambridge University Press

ISBN: 1107469317

Category: Science

Page: 572

View: 4965

For 40 years, Kleppner and Kolenkow's classic text has introduced students to the principles of mechanics. Now brought up to date, this revised and improved second edition is ideal for classical mechanics courses for first- and second-year undergraduates with foundation skills in mathematics. The book retains all the features of the first edition, including numerous worked examples, challenging problems and extensive illustrations, and has been restructured to improve the flow of ideas. It now features new examples taken from recent developments, such as laser slowing of atoms, exoplanets and black holes; a 'Hints, Clues and Answers' section for the end-of-chapter problems to support student learning; and a solutions manual for instructors at www.cambridge.org/kandk.

A First Course in Wavelets with Fourier Analysis

Author: Albert Boggess,Francis J. Narcowich

Publisher: John Wiley & Sons

ISBN: 1118211154

Category: Mathematics

Page: 336

View: 328

A comprehensive, self-contained treatment of Fourier analysisand wavelets—now in a new edition Through expansive coverage and easy-to-follow explanations, AFirst Course in Wavelets with Fourier Analysis, SecondEdition provides a self-contained mathematical treatment of Fourieranalysis and wavelets, while uniquely presenting signal analysisapplications and problems. Essential and fundamental ideas arepresented in an effort to make the book accessible to a broadaudience, and, in addition, their applications to signal processingare kept at an elementary level. The book begins with an introduction to vector spaces, innerproduct spaces, and other preliminary topics in analysis.Subsequent chapters feature: The development of a Fourier series, Fourier transform, anddiscrete Fourier analysis Improved sections devoted to continuous wavelets andtwo-dimensional wavelets The analysis of Haar, Shannon, and linear spline wavelets The general theory of multi-resolution analysis Updated MATLAB code and expanded applications to signalprocessing The construction, smoothness, and computation of Daubechies'wavelets Advanced topics such as wavelets in higher dimensions,decomposition and reconstruction, and wavelet transform Applications to signal processing are provided throughout thebook, most involving the filtering and compression of signals fromaudio or video. Some of these applications are presented first inthe context of Fourier analysis and are later explored in thechapters on wavelets. New exercises introduce additionalapplications, and complete proofs accompany the discussion of eachpresented theory. Extensive appendices outline more advanced proofsand partial solutions to exercises as well as updated MATLABroutines that supplement the presented examples. A First Course in Wavelets with Fourier Analysis, SecondEdition is an excellent book for courses in mathematics andengineering at the upper-undergraduate and graduate levels. It isalso a valuable resource for mathematicians, signal processingengineers, and scientists who wish to learn about wavelet theoryand Fourier analysis on an elementary level.

Partial Differential Equations

Author: Emmanuele DiBenedetto

Publisher: Springer Science & Business Media

ISBN: 1489928405

Category: Mathematics

Page: 416

View: 9996

This text is meant to be a self-contained, elementary introduction to Partial Differential Equations, assuming only advanced differential calculus and some basic LP theory. Although the basic equations treated in this book, given its scope, are linear, we have made an attempt to approach them from a nonlinear perspective. Chapter I is focused on the Cauchy-Kowaleski theorem. We discuss the notion of characteristic surfaces and use it to classify partial differential equations. The discussion grows out of equations of second order in two variables to equations of second order in N variables to p.d.e.'s of any order in N variables. In Chapters II and III we study the Laplace equation and connected elliptic theory. The existence of solutions for the Dirichlet problem is proven by the Perron method. This method clarifies the structure ofthe sub(super)harmonic functions and is closely related to the modern notion of viscosity solution. The elliptic theory is complemented by the Harnack and Liouville theorems, the simplest version of Schauder's estimates and basic LP -potential estimates. Then, in Chapter III, the Dirichlet and Neumann problems, as well as eigenvalue problems for the Laplacian, are cast in terms of integral equations. This requires some basic facts concerning double layer potentials and the notion of compact subsets of LP, which we present.