*Unlocking the Power of Data*

**Author**: Robin H. Lock,Patti Frazer Lock,Kari Lock Morgan,Eric F. Lock,Dennis F. Lock

**Publisher:** Wiley Global Education

**ISBN:** 1119163722

**Category:** Mathematics

**Page:** 590

**View:** 1142

With Wiley’s Enhanced E-Text, you get all the benefits of a downloadable, reflowable eBook with added resources to make your study time more effective, including: • Embedded & Searchable Tables & Figures • Links to Datasets through wiley.com • Video Solutions & Tutorials • Dataset Index embedded including links to datasets by page number Statistics: Unlocking the Power of Data, 2nd Edition continues to utilize these intuitive methods like randomization and bootstrap intervals to introduce the fundamental idea of statistical inference. These methods are brought to life through authentically relevant examples, enabled through easy to use statistical software, and are accessible at very early stages of a course. The program includes the more traditional methods like t-tests, chi-square texts, etc. but only after students have developed a strong intuitive understanding of inference through randomization methods. The focus throughout is on data analysis and the primary goal is to enable students to effectively collect data, analyze data, and interpret conclusions drawn from data. The program is driven by real data and real applications.

Never Highlight a Book Again! Just the FACTS101 study guides give the student the textbook outlines, highlights, practice quizzes and optional access to the full practice tests for their textbook.

Statistics: Unlocking the Power of Data, 2nd Edition Loose-leaf Print Companion continues to utilize these intuitive methods like randomization and bootstrap intervals to introduce the fundamental idea of statistical inference. These methods are brought to life through authentically relevant examples, enabled through easy to use statistical software, and are accessible at very early stages of a course. The program includes the more traditional methods like t-tests, chi-square texts, etc. but only after students have developed a strong intuitive understanding of inference through randomization methods. The focus throughout is on data analysis and the primary goal is to enable students to effectively collect data, analyze data, and interpret conclusions drawn from data. The program is driven by real data and real applications.

This package includes a three-hole punched, loose-leaf edition of ISBN 9781118583104 and a registration code for the WileyPLUS course associated with the text. Before you purchase, check with your instructor or review your course syllabus to ensure that your instructor requires WileyPLUS. For customer technical support, please visit http://www.wileyplus.com/support. WileyPLUS registration cards are only included with new products. Used and rental products may not include WileyPLUS registration cards. This First Edition of Statistics moves the curriculum in innovative ways while still looking relatively familiar. Statistics utilizes intuitive methods to introduce the fundamental idea of statistical inference. These intuitive methods are enabled through statistical software and are accessible at very early stages of a course. The text also includes the more traditional methods such as t-tests, chi-square tests, etc., but only after students have developed a strong intuitive understanding of inference through randomization methods. The text is designed for use in a one-semester introductory statistics course. The focus throughout is on data analysis and the primary goal is to enable students to effectively collect data, analyze data, and interpret conclusions drawn from data. The text is driven by real data and real applications. Although the only prerequisite is a minimal working knowledge of algebra, students completing the course should be able to accurately interpret statistical results and to analyze straightforward data sets.

Statistics, 2nd Edition moves the curriculum in innovative ways while still looking relatively familiar. Statistics, 2e utilizes intuitive methods to introduce the fundamental idea of statistical inference. These intuitive methods are enabled through statistical software and are accessible at very early stages of a course. The text also includes the more traditional methods such as t-tests, chi-square tests, etc., but only after students have developed a strong intuitive understanding of inference through randomization methods. The text is designed for use in a one-semester introductory statistics course. The focus throughout is on data analysis and the primary goal is to enable students to effectively collect data, analyze data, and interpret conclusions drawn from data. The text is driven by real data and real applications. Students completing the course should be able to accurately interpret statistical results and to analyze straightforward data sets.

Never HIGHLIGHT a Book Again Includes all testable terms, concepts, persons, places, and events. Cram101 Just the FACTS101 studyguides gives all of the outlines, highlights, and quizzes for your textbook with optional online comprehensive practice tests. Only Cram101 is Textbook Specific. Accompanies: 9780872893795. This item is printed on demand.

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

This book presents a collection of selected papers that represent the current variety of research on the teaching and learning of probability. The respective chapters address a diverse range of theoretical, empirical and practical aspects underpinning the teaching and learning of probability, curricular issues, probabilistic reasoning, misconceptions and biases, as well as their pedagogical implications. These chapters are divided into THREE main sections, dealing with: TEACHING PROBABILITY, STUDENTS' REASONING AND LEARNING AND EDUCATION OF TEACHERS. In brief, the papers presented here include research dealing with teachers and students at different levels and ages (from primary school to university) and address epistemological and curricular analysis, as well as the role of technology, simulations, language and visualisation in teaching and learning probability. As such, it offers essential information for teachers, researchers and curricular designers alike.

The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version. See What’s New in the Second Edition: Increased emphasis on more idiomatic R provides a grounding in the functionality of base R. Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible. Use of knitr package makes code easier to read and therefore easier to reason about. Additional information on computer-intensive approaches motivates the traditional approach. Updated examples and data make the information current and topical. The book has an accompanying package, UsingR, available from CRAN, R’s repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package="UsingR")), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text. The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing.

Due to the extremely positive reception of this textbook, it is now being published in its 5th edition. The book provides an introduction to the key ideas and elements of probability theory and statistics. Stochastic concepts, models, and methods are highlighted through typical application examples, then analyzed theoretically and systematically explored.

Improve Your Analytical Skills Incorporating the latest R packages as well as new case studies and applications, Using R and RStudio for Data Management, Statistical Analysis, and Graphics, Second Edition covers the aspects of R most often used by statistical analysts. New users of R will find the book’s simple approach easy to understand while more sophisticated users will appreciate the invaluable source of task-oriented information. New to the Second Edition The use of RStudio, which increases the productivity of R users and helps users avoid error-prone cut-and-paste workflows New chapter of case studies illustrating examples of useful data management tasks, reading complex files, making and annotating maps, "scraping" data from the web, mining text files, and generating dynamic graphics New chapter on special topics that describes key features, such as processing by group, and explores important areas of statistics, including Bayesian methods, propensity scores, and bootstrapping New chapter on simulation that includes examples of data generated from complex models and distributions A detailed discussion of the philosophy and use of the knitr and markdown packages for R New packages that extend the functionality of R and facilitate sophisticated analyses Reorganized and enhanced chapters on data input and output, data management, statistical and mathematical functions, programming, high-level graphics plots, and the customization of plots Easily Find Your Desired Task Conveniently organized by short, clear descriptive entries, this edition continues to show users how to easily perform an analytical task in R. Users can quickly find and implement the material they need through the extensive indexing, cross-referencing, and worked examples in the text. Datasets and code are available for download on a supplementary website.