Statistical Data Analysis

Author: Glen Cowan

Publisher: Clarendon Press

ISBN: 0191583340

Category:

Page: 212

View: 6703

This book is a guide to the practical application of statistics in data analysis as typically encountered in the physical sciences. It is primarily addressed at students and professionals who need to draw quantitative conclusions from experimental data. Although most of the examples are taken from particle physics, the material is presented in a sufficiently general way as to be useful to people from most branches of the physical sciences. The first part of the book describes the basic tools of data analysis: concepts of probability and random variables, Monte Carlo techniques, statistical tests, and methods of parameter estimation. The last three chapters are somewhat more specialized than those preceding, covering interval estimation, characteristic functions, and the problem of correcting distributions for the effects of measurement errors (unfolding).

Statistical Data Analysis Explained

Applied Environmental Statistics with R

Author: Clemens Reimann,Peter Filzmoser,Robert Garrett,Rudolf Dutter

Publisher: John Wiley & Sons

ISBN: 1119965284

Category: Science

Page: 362

View: 6049

Few books on statistical data analysis in the natural sciences are written at a level that a non-statistician will easily understand. This is a book written in colloquial language, avoiding mathematical formulae as much as possible, trying to explain statistical methods using examples and graphics instead. To use the book efficiently, readers should have some computer experience. The book starts with the simplest of statistical concepts and carries readers forward to a deeper and more extensive understanding of the use of statistics in environmental sciences. The book concerns the application of statistical and other computer methods to the management, analysis and display of spatial data. These data are characterised by including locations (geographic coordinates), which leads to the necessity of using maps to display the data and the results of the statistical methods. Although the book uses examples from applied geochemistry, and a large geochemical survey in particular, the principles and ideas equally well apply to other natural sciences, e.g., environmental sciences, pedology, hydrology, geography, forestry, ecology, and health sciences/epidemiology. The book is unique because it supplies direct access to software solutions (based on R, the Open Source version of the S-language for statistics) for applied environmental statistics. For all graphics and tables presented in the book, the R-scripts are provided in the form of executable R-scripts. In addition, a graphical user interface for R, called DAS+R, was developed for convenient, fast and interactive data analysis. Statistical Data Analysis Explained: Applied Environmental Statistics with R provides, on an accompanying website, the software to undertake all the procedures discussed, and the data employed for their description in the book.

Statistical Data Analysis

Author: Ram Gnanadesikan

Publisher: American Mathematical Soc.

ISBN: 082180040X

Category: Mathematics

Page: 141

View: 2588

Methods for Statistical Data Analysis of Multivariate Observations

Author: R. Gnanadesikan

Publisher: John Wiley & Sons

ISBN: 1118030923

Category: Mathematics

Page: 384

View: 2917

A practical guide for multivariate statistical techniques-- nowupdated and revised In recent years, innovations in computer technology and statisticalmethodologies have dramatically altered the landscape ofmultivariate data analysis. This new edition of Methods forStatistical Data Analysis of Multivariate Observations explorescurrent multivariate concepts and techniques while retaining thesame practical focus of its predecessor. It integrates methods anddata-based interpretations relevant to multivariate analysis in away that addresses real-world problems arising in many areas ofinterest. Greatly revised and updated, this Second Edition provides helpfulexamples, graphical orientation, numerous illustrations, and anappendix detailing statistical software, including the S (or Splus)and SAS systems. It also offers * An expanded chapter on cluster analysis that covers advances inpattern recognition * New sections on inputs to clustering algorithms and aids forinterpreting the results of cluster analysis * An exploration of some new techniques of summarization andexposure * New graphical methods for assessing the separations among theeigenvalues of a correlation matrix and for comparing sets ofeigenvectors * Knowledge gained from advances in robust estimation anddistributional models that are slightly broader than themultivariate normal This Second Edition is invaluable for graduate students, appliedstatisticians, engineers, and scientists wishing to usemultivariate techniques in a variety of disciplines.

A Casebook for Spatial Statistical Data Analysis

A Compilation of Analyses of Different Thematic Data Sets

Author: Daniel A. Griffith,Larry J. Layne,J. K. Ord,Akio Sone

Publisher: Oxford University Press on Demand

ISBN: 0195109589

Category: Mathematics

Page: 506

View: 1783

This volume compiles geostatistical and spatial autoregressive data analyses involving georeferenced socioeconomic, natural resources, agricultural, pollution, and epidemiological variables. Benchmark analyses are followed by analyses of readily available data sets, emphasizing parallels between geostatistical and spatial autoregressive findings. Both SAS and SPSS code are presented for implementation purposes. This informative casebook will serve geographers, regional scientists, applied spatial statisticians, and spatial scientists from across disciplines.

Statistical Data Analysis for Ocean and Atmospheric Sciences

Includes a Data Disk Designed to Be Used as a Minitab File.

Author: H. Jean Thiebaux

Publisher: Elsevier

ISBN: 0080926290

Category: Mathematics

Page: 247

View: 7350

Studies of local and global phenomena generate descriptions which require statistical analysis. In this text, H. Jean Thiebaux presents a succinct yet comprehensive review of the fundamentals of statistics as they pertain to studies in oceanic and atmospheric sciences. The text includes an accompanying disk with compatible Minitab sample data. Together, this volume and the included data provide insights into the basics of statistical inference, data analysis, and distributional models of variability. Oceanographers, meteorologists, marine biologists, and other environmental scientists will find this book of great value as a statistical tool for their continuing studies. Key Features * Specifically designed for students of the ocean and atmospheric sciences * Contains a disk containing files of real ocean and atmospheric data, in universal ASCII format, on which many of the exercises are based * Provides succinct yet comprehensive coverage * Designed to teach students statistical methods with the scientific realism of computer analysis and statistical inference

Density Estimation for Statistics and Data Analysis

Author: Bernard. W. Silverman

Publisher: CRC Press

ISBN: 9780412246203

Category: Mathematics

Page: 176

View: 3443

Although there has been a surge of interest in density estimation in recent years, much of the published research has been concerned with purely technical matters with insufficient emphasis given to the technique's practical value. Furthermore, the subject has been rather inaccessible to the general statistician. The account presented in this book places emphasis on topics of methodological importance, in the hope that this will facilitate broader practical application of density estimation and also encourage research into relevant theoretical work. The book also provides an introduction to the subject for those with general interests in statistics. The important role of density estimation as a graphical technique is reflected by the inclusion of more than 50 graphs and figures throughout the text. Several contexts in which density estimation can be used are discussed, including the exploration and presentation of data, nonparametric discriminant analysis, cluster analysis, simulation and the bootstrap, bump hunting, projection pursuit, and the estimation of hazard rates and other quantities that depend on the density. This book includes general survey of methods available for density estimation. The Kernel method, both for univariate and multivariate data, is discussed in detail, with particular emphasis on ways of deciding how much to smooth and on computation aspects. Attention is also given to adaptive methods, which smooth to a greater degree in the tails of the distribution, and to methods based on the idea of penalized likelihood.

Statistical Data Analysis Based on the L1-Norm and Related Methods

Author: Yadolah Dodge

Publisher: Birkhäuser

ISBN: 3034882017

Category: Mathematics

Page: 456

View: 8383

This volume contains a selection of invited papers, presented to the fourth International Conference on Statistical Data Analysis Based on the L1-Norm and Related Methods, held in Neuchâtel, Switzerland, from August 4–9, 2002. The contributions represent clear evidence to the importance of the development of theory, methods and applications related to the statistical data analysis based on the L1-norm.

Statistical Models for Data Analysis

Author: Paolo Giudici,Salvatore Ingrassia,Maurizio Vichi

Publisher: Springer Science & Business Media

ISBN: 3319000322

Category: Mathematics

Page: 419

View: 8954

The papers in this book cover issues related to the development of novel statistical models for the analysis of data. They offer solutions for relevant problems in statistical data analysis and contain the explicit derivation of the proposed models as well as their implementation. The book assembles the selected and refereed proceedings of the biannual conference of the Italian Classification and Data Analysis Group (CLADAG), a section of the Italian Statistical Society. ​

Mathematical Statistics and Data Analysis

Author: John A. Rice

Publisher: Cengage Learning

ISBN: 0534399428

Category: Mathematics

Page: 688

View: 5833

This is the first text in a generation to re-examine the purpose of the mathematical statistics course. The book's approach interweaves traditional topics with data analysis and reflects the use of the computer with close ties to the practice of statistics. The author stresses analysis of data, examines real problems with real data, and motivates the theory. The book's descriptive statistics, graphical displays, and realistic applications stand in strong contrast to traditional texts that are set in abstract settings. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Statistical Data Analysis for the Physical Sciences

Author: Adrian Bevan

Publisher: Cambridge University Press

ISBN: 1107067596

Category: Science

Page: N.A

View: 496

Data analysis lies at the heart of every experimental science. Providing a modern introduction to statistics, this book is ideal for undergraduates in physics. It introduces the necessary tools required to analyse data from experiments across a range of areas, making it a valuable resource for students. In addition to covering the basic topics, the book also takes in advanced and modern subjects, such as neural networks, decision trees, fitting techniques and issues concerning limit or interval setting. Worked examples and case studies illustrate the techniques presented, and end-of-chapter exercises help test the reader's understanding of the material.

Introduction to Statistical Data Analysis for the Life Sciences, Second Edition

Author: Claus Thorn Ekstrom,Helle Sørensen

Publisher: CRC Press

ISBN: 1482238934

Category: Mathematics

Page: 526

View: 4717

A Hands-On Approach to Teaching Introductory Statistics Expanded with over 100 more pages, Introduction to Statistical Data Analysis for the Life Sciences, Second Edition presents the right balance of data examples, statistical theory, and computing to teach introductory statistics to students in the life sciences. This popular textbook covers the mathematics underlying classical statistical analysis, the modeling aspects of statistical analysis and the biological interpretation of results, and the application of statistical software in analyzing real-world problems and datasets. New to the Second Edition A new chapter on non-linear regression models A new chapter that contains examples of complete data analyses, illustrating how a full-fledged statistical analysis is undertaken Additional exercises in most chapters A summary of statistical formulas related to the specific designs used to teach the statistical concepts This text provides a computational toolbox that enables students to analyze real datasets and gain the confidence and skills to undertake more sophisticated analyses. Although accessible with any statistical software, the text encourages a reliance on R. For those new to R, an introduction to the software is available in an appendix. The book also includes end-of-chapter exercises as well as an entire chapter of case exercises that help students apply their knowledge to larger datasets and learn more about approaches specific to the life sciences.

Comparative Approaches to Using R and Python for Statistical Data Analysis

Author: Sarmento, Rui,Costa, Vera

Publisher: IGI Global

ISBN: 1522519890

Category: Business & Economics

Page: 197

View: 7428

The application of statistics has proliferated in recent years and has become increasingly relevant across numerous fields of study. With the advent of new technologies, its availability has opened into a wider range of users. Comparative Approaches to using R and Python for Statistical Data Analysis is a comprehensive source of emerging research and perspectives on the latest computer software and available languages for the visualization of statistical data. By providing insights on relevant topics, such as inference, factor analysis, and linear regression, this publication is ideally designed for professionals, researchers, academics, graduate students, and practitioners interested in the optimization of statistical data analysis.

Environmental Statistics and Data Analysis

Author: Wayne R. Ott

Publisher: Routledge

ISBN: 1351450077

Category: Mathematics

Page: 336

View: 3762

This easy-to-understand introduction emphasizes the areas of probability theory and statistics that are important in environmental monitoring, data analysis, research, environmental field surveys, and environmental decision making. It communicates basic statistical theory with very little abstract mathematical notation, but without omitting importa

IBM SPSS by Example

A Practical Guide to Statistical Data Analysis

Author: Alan C. Elliott,Wayne A. Woodward

Publisher: SAGE Publications

ISBN: 1483319040

Category: Social Science

Page: 368

View: 6470

The updated Second Edition of Alan C. Elliott and Wayne A. Woodward’s “cut to the chase” IBM SPSS guide quickly explains the when, where, and how of statistical data analysis as it is used for real-world decision making in a wide variety of disciplines. This one-stop reference provides succinct guidelines for performing an analysis using SPSS software, avoiding pitfalls, interpreting results, and reporting outcomes. Written from a practical perspective, IBM SPSS by Example, Second Edition provides a wealth of information—from assumptions and design to computation, interpretation, and presentation of results—to help users save time, money, and frustration.

R Through Excel

A Spreadsheet Interface for Statistics, Data Analysis, and Graphics

Author: Richard M. Heiberger,Erich Neuwirth

Publisher: Springer Science & Business Media

ISBN: 1441900527

Category: Computers

Page: 344

View: 1158

In this book, the authors build on RExcel, a free add-in for Excel that can be downloaded from the R distribution network. RExcel seamlessly integrates the entire set of R's statistical and graphical methods into Excel, allowing students to focus on statistical methods and concepts and minimizing the distraction of learning a new programming language.

Statistical Data Analysis and Inference

Author: Y. Dodge

Publisher: Elsevier

ISBN: 1483296113

Category: Mathematics

Page: 630

View: 3824

A wide range of topics and perspectives in the field of statistics are brought together in this volume. The contributions originate from invited papers presented at an international conference which was held in honour of C. Radhakrishna Rao, one of the most eminent statisticians of our time and a distinguished scientist.

Statistical Data Analysis Using SAS

Intermediate Statistical Methods

Author: Mervyn G. Marasinghe,Kenneth J. Koehler

Publisher: Springer

ISBN: 3319692399

Category: Computers

Page: 679

View: 3610

The aim of this textbook (previously titled SAS for Data Analytics) is to teach the use of SAS for statistical analysis of data for advanced undergraduate and graduate students in statistics, data science, and disciplines involving analyzing data. The book begins with an introduction beyond the basics of SAS, illustrated with non-trivial, real-world, worked examples. It proceeds to SAS programming and applications, SAS graphics, statistical analysis of regression models, analysis of variance models, analysis of variance with random and mixed effects models, and then takes the discussion beyond regression and analysis of variance to conclude. Pedagogically, the authors introduce theory and methodological basis topic by topic, present a problem as an application, followed by a SAS analysis of the data provided and a discussion of results. The text focuses on applied statistical problems and methods. Key features include: end of chapter exercises, downloadable SAS code and data sets, and advanced material suitable for a second course in applied statistics with every method explained using SAS analysis to illustrate a real-world problem. New to this edition: • Covers SAS v9.2 and incorporates new commands • Uses SAS ODS (output delivery system) for reproduction of tables and graphics output • Presents new commands needed to produce ODS output • All chapters rewritten for clarity • New and updated examples throughout • All SAS outputs are new and updated, including graphics • More exercises and problems • Completely new chapter on analysis of nonlinear and generalized linear models • Completely new appendix Mervyn G. Marasinghe, PhD, is Associate Professor Emeritus of Statistics at Iowa State University, where he has taught courses in statistical methods and statistical computing. Kenneth J. Koehler, PhD, is University Professor of Statistics at Iowa State University, where he teaches courses in statistical methodology at both graduate and undergraduate levels and primarily uses SAS to supplement his teaching.