**Author**: Charles Kittel

**Publisher:** Oldenbourg Verlag

**ISBN:** 3486597558

**Category:** Science

**Page:** 754

**View:** 3467

Sämtliche Grundlagen der Festkörperphysik werden ausführlich dargestellt und mit vielen Zeichnungen und Bildern begreifbar gemacht. Besonders hilfreich für das Verständnis ist die enge Verzahnung von Experiment, Anwendung und Theorie.

Updated to reflect recent work in the field, this book emphasizes crystalline solids, going from the crystal lattice to the ideas of reciprocal space and Brillouin zones, and develops these ideas for lattice vibrations, for the theory of metals, and for semiconductors. The theme of lattice periodicity and its varied consequences runs through eighty percent of the book. Other sections deal with major aspects of solid state physics controlled by other phenomena: superconductivity, dielectric and magnetic properties, and magnetic resonance.

Although there are many books published in solid state physics, there is a wide gap between the active field of research and the concepts traditionally taught in solid state courses. This book fills that gap. The style is tutorial, simple, and completely self-contained. Solid State Physicsexplains to readers the newest advances in the area of condensed matter physics with rigorous, but lucid mathematics. Examples are an integral part of the text, and they are carefully designed to apply the fundamental principles illustrated in the text to currently active topics of research. Bridges the gap between fundamental principles and active fields of reserch, including explanations of all the latest advances Provides an in-depth treatment of current research topics Examples are integral to the text and apply fundamental principles to current topics of research Both authors have many years of experience of teaching at a variety of levels--undergraduate, post-graduate, tutorial workshops and seminars

A must-have textbook for any undergraduate studying solid state physics. This successful brief course in solid state physics is now in its second edition. The clear and concise introduction not only describes all the basic phenomena and concepts, but also such advanced issues as magnetism and superconductivity. Each section starts with a gentle introduction, covering basic principles, progressing to a more advanced level in order to present a comprehensive overview of the subject. The book is providing qualitative discussions that help undergraduates understand concepts even if they can?t follow all the mathematical detail. The revised edition has been carefully updated to present an up-to-date account of the essential topics and recent developments in this exciting field of physics. The coverage now includes ground-breaking materials with high relevance for applications in communication and energy, like graphene and topological insulators, as well as transparent conductors. The text assumes only basic mathematical knowledge on the part of the reader and includes more than 100 discussion questions and some 70 problems, with solutions free to lecturers from the Wiley-VCH website. The author's webpage provides Online Notes on x-ray scattering, elastic constants, the quantum Hall effect, tight binding model, atomic magnetism, and topological insulators. This new edition includes the following updates and new features: * Expanded coverage of mechanical properties of solids, including an improved discussion of the yield stress * Crystal structure, mechanical properties, and band structure of graphene * The coverage of electronic properties of metals is expanded by a section on the quantum hall effect including exercises. New topics include the tight-binding model and an expanded discussion on Bloch waves. * With respect to semiconductors, the discussion of solar cells has been extended and improved. * Revised coverage of magnetism, with additional material on atomic magnetism * More extensive treatment of finite solids and nanostructures, now including topological insulators * Recommendations for further reading have been updated and increased. * New exercises on Hall mobility, light penetrating metals, band structure

Introduces students to the key research topics within modern solid state physics with the minimum of mathematics.

While the standard solid state topics are covered, the basic ones often have more detailed derivations than is customary (with an empasis on crystalline solids). Several recent topics are introduced, as are some subjects normally included only in condensed matter physics. Lattice vibrations, electrons, interactions, and spin effects (mostly in magnetism) are discussed the most comprehensively. Many problems are included whose level is from "fill in the steps" to long and challenging, and the text is equipped with references and several comments about experiments with figures and tables.

This new edition of the well-received introduction to solid-state physics provides a comprehensive overview of the basic theoretical and experimental concepts of materials science. Experimental aspects and laboratory details are highlighted in separate panels that enrich text and emphasize recent developments. Notably, new material in the third edition includes sections on important new devices, aspects of non- periodic structures of matter, phase transitions, defects, superconductors and nanostructures. Students will benefit significantly from solving the exercises given at the end of each chapter. This book is intended for university students in physics, materials science and electrical engineering. It has been thoroughly updated to maintain its relevance and usefulness to students and professionals.

The 2001 Spring Meeting of the 65th Deutsche Physikalische Gesellschaft was held together with the 65. Physikertagung, in Hamburg, during the pe riod March 26 30 2001. With more than 3500 conference attendees, a record has again been achieved after several years of stabilisation in participation. This proves the continuing and now even increasing, attraction of solid state physics, especially for young colleagues who often discuss for the first time their scientific results in public at this meeting. More than 2600 scientific pa pers were presented orally, as well as posters, among them about 120 invited lectures from Germany and from abroad. This Volume 41 of "Advances in Solid State Physics" contains the written versions of half of the latter. We nevertheless hope that the book truly reflects the current state of the field. Amazingly enough, the majority of the papers as well as the discussions at the meeting, concentrated on the nanostructured solid state. This re flects the currently extremely intensive quest for developing the electronic and magnetic device generations of the future, which stimulates science be sides the challenge of the unknown as has always been the case since the very beginning of Solid State Physics about 100 years ago.

Solid State Physics opens with the adiabatic approximation to the many-body problem of a system of ions and valence electrons. After chapters on lattice symmetry, structure and dynamics, it then proceeds with four chapters devoted to the single-electron theory of the solid state. Semiconductors and dielectrics are covered in depth and chapters on magnetism and superconductivity follow. The book concludes with a chapter on solid surfaces. Every section is followed by solved problems, some of them illustrating areas of current interest in solid state physics, to give the student a practical working knowledge of the subject, and the text is illustrated by many supplementary examples.

Assuming an elementary knowledge of quantum and statistical physics, this book provides a comprehensive guide to principal physical properties of condensed matter, as well as the underlying theory necessary for a proper understanding of their origins. The subject matter covers the principal features of condensed matter physics, but with particular accent on the properties of metal alloys. Relevance to technical applications is recognized.

appendices.

Solid State Physics

This revised and updated Fourth Edition of the text builds on the strength of previous edition and gives a systematic and clear exposition of the fundamental principles of solid state physics. The text covers the topics, such as crystal structures and chemical bonds, semiconductors, dielectrics, magnetic materials, superconductors, and nanomaterials. What distinguishes this text is the clarity and precision with which the author discusses the principles of physics, their relations as well as their applications. With the introduction of new sections and additional information, the fourth edition should prove highly useful for the students. This book is designed for the courses in solid state physics for B.Sc. (Hons.) and M.Sc. students of physics. Besides, the book would also be useful to the students of chemistry, material science, electrical/electronic and allied engineering disciplines. New to the Fourth Edition • Solved examples have been introduced to explain the fundamental principles of physics. • Matrix representation for symmetry operations has been introduced in Chapter 1 to enable the use of Group Theory for treating crystallography. • A section entitled ‘Other Contributions to Heat Capacity’, has been introduced in Chapter 5. • A statement on ‘Kondo effect (minimum)’ has been added in Chapter 14. • A section on ‘Graphenes’ has been introduced in Chapter 16. • The section on ‘Carbon Nanotubes’, in Chapter 16 has been revised. • A “Lesson on Group Theory”, has been added as Appendix.

Introduction to Solid State Physics, in its Second Edition, provides a comprehensive introduction to the physical properties of crystalline solids. It explains the structure of crystals, theory of crystal diffraction and the reciprocal lattice. As the book advances, it describes different kinds of imperfections in crystals, bonding in solids, and vibration in one-dimensional monoatomic and diatomic linear lattice. Different theories of specific heat, thermal conductivity of solids and lattice thermal conductivity are thoroughly dealt with. Coverage also includes the free electron theory, band theory of solids and semiconductors. In addition, the book also describes in detail the magnetic properties of solids and superconductivity. Finally, the book includes discussions on lasers, nanotechnology and the basic principles of fibre optics and holography. Some new topics like cellular method, quantum Hall effect, de Haas van Alphen effect, Pauli paramagnetism and semiconductor laser have been added in the present edition of the book to make it more useful for the students. The book is designed to meet the requirements of undergraduate and postgraduate students of physics for their courses in solid state physics, condensed matter physics and material science. KEY FEATURES • Puts a conceptual emphasis on the subject. • Includes numerous diagrams and figures to clarify the concepts. • Gives step-by-step explanations of theories. • Provides chapter-end exercises to test the knowledge acquired.