**Author**: Klaus Lamotke

**Publisher:** Springer-Verlag

**ISBN:** 3322917673

**Category:** Mathematics

**Page:** 224

**View:** 2020

The aim of this book is to give an overview of selected topics on the topology of real and complex isolated singularities, with emphasis on its relations to other branches of geometry and topology. The first chapters are mostly devoted to complex singularities and a myriad of results spread in a vast literature, which are presented here in a unified way, accessible to non-specialists. Among the topics are the fibration theorems of Milnor; the relation with 3-dimensional Lie groups; exotic spheres; spin structures and 3-manifold invariants; the geometry of quadrics and Arnold's theorem which states that the complex projective plane modulo conjugation is the 4-sphere. The second part of the book studies pioneer work about real analytic singularities which arise from the topological and geometric study of holomorphic vector fields and foliations. In the low dimensional case these turn out to be related to fibred links in the 3-sphere defined by meromorphic functions. This provides new methods for constructing manifolds equipped with a rich geometry. The book is largely self-contained and serves a wide audience of graduate students, mathematicians and researchers interested in geometry and topology.

*A research textbook in tribute to Oscar Zariski Based on the courses given at the Working Week in Obergurgl, Austria, September 7–14, 1997*

**Author**: Herwig Hauser,Joseph Lipman,Frans Oort,Adolfo Quirós

**Publisher:** Springer Science & Business Media

**ISBN:** 9783764361785

**Category:** Mathematics

**Page:** 598

**View:** 4994

This book provides the first comprehensive introduction to the circle of ideas developed around Mori's program.

These notes are intended to describe the basic concepts of solving inverse problems in a stable way. Since almost all in verse problems are ill-posed in its original formulation the discussion of methods to overcome difficulties which result from this fact is the main subject of this book. Over the past fifteen years, the number of publications on inverse problems has grown rapidly. Therefore, these notes can be neither a comprehensive introduction nor a complete mono graph on the topics considered; it is designed to provide the main ideas and methods. Throughout, we have not striven for the most general statement, but the clearest one which would cover the most situations. The presentation is intended to be accessible to students whose mathematical background includes basic courses in ad vanced calculus, linear algebra and functional analysis. Each chapter contains bibliographical comments. At the end of Chap ter 1 references are given which refer to topics which are not studied in this book. I am very grateful to Mrs. B. Brodt for typing and to W. Scondo and u. Schuch for inspecting the manuscript.

Each volume includes "Wissenschaftliche zeitschriften."

The last book XIII of Euclid's Elements deals with the regular solids which therefore are sometimes considered as crown of classical geometry. More than two thousand years later around 1850 Schl~fli extended the classification of regular solids to four and more dimensions. A few decades later, thanks to the invention of group and invariant theory the old three dimensional regular solid were involved in the development of new mathematical ideas: F. Klein (Lectures on the Icosa hedron and the Resolution of Equations of Degree Five, 1884) emphasized the relation of the regular solids to the finite rotation groups. He introduced complex coordinates and by means of invariant theory associated polynomial equations with these groups. These equations in turn describe isolated singularities of complex surfaces. The structure of the singularities is investigated by methods of commutative algebra, algebraic and complex analytic geometry, differential and algebraic topology. A paper by DuVal from 1934 (see the References), in which resolutions play an important rele, marked an early stage of these investigations. Around 1970 Klein's polynomials were again related to new mathematical ideas: V. I. Arnold established a hierarchy of critical points of functions in several variables according to growing com plexity. In this hierarchy Kleinls polynomials describe the "simple" critical points.