Python Algorithms

Mastering Basic Algorithms in the Python Language

Author: Magnus Lie Hetland

Publisher: Apress

ISBN: 1484200551

Category: Computers

Page: 320

View: 1906

Python Algorithms, Second Edition explains the Python approach to algorithm analysis and design. Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques. The book deals with some of the most important and challenging areas of programming and computer science in a highly readable manner. It covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data structures that are built into the Python language are explained, and the user is shown how to implement and evaluate others.

Python Algorithms

Mastering Basic Algorithms in the Python Language

Author: Magnus Lie Hetland

Publisher: Apress

ISBN: 1430232382

Category: Computers

Page: 336

View: 1358

Python Algorithms explains the Python approach to algorithm analysis and design. Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques. The book deals with some of the most important and challenging areas of programming and computer science, but in a highly pedagogic and readable manner. The book covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data structures that are built into the Python language are explained, and the user is shown how to implement and evaluate others himself.

Python Algorithms

Mastering Basic Algorithms in the Python Language

Author: Magnus Lie Hetland

Publisher: Apress

ISBN: 1430232374

Category: Computers

Page: 336

View: 5426

Python Algorithms explains the Python approach to algorithm analysis and design. Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques. The book deals with some of the most important and challenging areas of programming and computer science, but in a highly pedagogic and readable manner. The book covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data structures that are built into the Python language are explained, and the user is shown how to implement and evaluate others himself. What you’ll learn Transform new problems to well-known algorithmic problems with efficient solutions, or show that the problems belong to classes of problems thought not to be efficiently solvable. Analyze algorithms and Python programs both using mathematical tools and basic experiments and benchmarks. Prove correctness, optimality, or bounds on approximation error for Python programs and their underlying algorithms. Understand several classical algorithms and data structures in depth, and be able to implement these efficiently in Python. Design and implement new algorithms for new problems, using time-tested design principles and techniques. Speed up implementations, using a plethora of tools for high-performance computing in Python. Who this book is for The book is intended for Python programmers who need to learn about algorithmic problem-solving, or who need a refresher. Students of computer science, or similar programming-related topics, such as bioinformatics, may also find the book to be quite useful. Table of Contents Introduction The Basics Counting 101 Induction and Recursion ... and Reduction Traversal: The Skeleton Key of Algorithmics Divide, Combine, and Conquer Greed Is Good? Prove It! Tangled Dependencies and Memoization From A to B with Edsger and Friends Matchings, Cuts, and Flows Hard Problems and (Limited) Sloppiness

Beginning Python

From Novice to Professional

Author: Magnus Lie Hetland

Publisher: Apress

ISBN: 1430206349

Category: Computers

Page: 688

View: 5649

Gain a fundamental understanding of Python's syntax and features with the second edition of Beginning Python, an up–to–date introduction and practical reference. Covering a wide array of Python–related programming topics, including addressing language internals, database integration, network programming, and web services, you'll be guided by sound development principles. Ten accompanying projects will ensure you can get your hands dirty in no time. Updated to reflect the latest in Python programming paradigms and several of the most crucial features found in Python 3.0 (otherwise known as Python 3000), advanced topics, such as extending Python and packaging/distributing Python applications, are also covered.

Data Structures and Algorithms in Python

Author: Michael T. Goodrich,Roberto Tamassia,Michael H. Goldwasser

Publisher: Wiley Global Education

ISBN: 1118476735

Category: Computers

Page: 748

View: 4374

Based on the authors’ market leading data structures books in Java and C++, this textbook offers a comprehensive, definitive introduction to data structures in Python by authoritative authors. Data Structures and Algorithms in Python is the first authoritative object-oriented book available for the Python data structures course. Designed to provide a comprehensive introduction to data structures and algorithms, including their design, analysis, and implementation, the text will maintain the same general structure as Data Structures and Algorithms in Java and Data Structures and Algorithms in C++.

Python Data Structures and Algorithms

Author: Benjamin Baka

Publisher: Packt Publishing Ltd

ISBN: 1786465337

Category: Computers

Page: 310

View: 3004

Implement classic and functional data structures and algorithms using Python About This Book A step by step guide, which will provide you with a thorough discussion on the analysis and design of fundamental Python data structures. Get a better understanding of advanced Python concepts such as big-o notation, dynamic programming, and functional data structures. Explore illustrations to present data structures and algorithms, as well as their analysis, in a clear, visual manner. Who This Book Is For The book will appeal to Python developers. A basic knowledge of Python is expected. What You Will Learn Gain a solid understanding of Python data structures. Build sophisticated data applications. Understand the common programming patterns and algorithms used in Python data science. Write efficient robust code. In Detail Data structures allow you to organize data in a particular way efficiently. They are critical to any problem, provide a complete solution, and act like reusable code. In this book, you will learn the essential Python data structures and the most common algorithms. With this easy-to-read book, you will be able to understand the power of linked lists, double linked lists, and circular linked lists. You will be able to create complex data structures such as graphs, stacks and queues. We will explore the application of binary searches and binary search trees. You will learn the common techniques and structures used in tasks such as preprocessing, modeling, and transforming data. We will also discuss how to organize your code in a manageable, consistent, and extendable way. The book will explore in detail sorting algorithms such as bubble sort, selection sort, insertion sort, and merge sort. By the end of the book, you will learn how to build components that are easy to understand, debug, and use in different applications. Style and Approach The easy-to-read book with its fast-paced nature will improve the productivity of Python programmers and improve the performance of Python applications.

Kali Linux - An Ethical Hacker's Cookbook

End-to-end penetration testing solutions

Author: Himanshu Sharma

Publisher: Packt Publishing Ltd

ISBN: 1787120287

Category: Computers

Page: 376

View: 7163

Over 120 recipes to perform advanced penetration testing with Kali Linux About This Book Practical recipes to conduct effective penetration testing using the powerful Kali Linux Leverage tools like Metasploit, Wireshark, Nmap, and many more to detect vulnerabilities with ease Confidently perform networking and application attacks using task-oriented recipes Who This Book Is For This book is aimed at IT security professionals, pentesters, and security analysts who have basic knowledge of Kali Linux and want to conduct advanced penetration testing techniques. What You Will Learn Installing, setting up and customizing Kali for pentesting on multiple platforms Pentesting routers and embedded devices Bug hunting 2017 Pwning and escalating through corporate network Buffer overflows 101 Auditing wireless networks Fiddling around with software-defned radio Hacking on the run with NetHunter Writing good quality reports In Detail With the current rate of hacking, it is very important to pentest your environment in order to ensure advanced-level security. This book is packed with practical recipes that will quickly get you started with Kali Linux (version 2016.2) according to your needs, and move on to core functionalities. This book will start with the installation and configuration of Kali Linux so that you can perform your tests. You will learn how to plan attack strategies and perform web application exploitation using tools such as Burp, and Jexboss. You will also learn how to perform network exploitation using Metasploit, Sparta, and Wireshark. Next, you will perform wireless and password attacks using tools such as Patator, John the Ripper, and airoscript-ng. Lastly, you will learn how to create an optimum quality pentest report! By the end of this book, you will know how to conduct advanced penetration testing thanks to the book's crisp and task-oriented recipes. Style and approach This is a recipe-based book that allows you to venture into some of the most cutting-edge practices and techniques to perform penetration testing with Kali Linux.

Learning JavaScript

Add Sparkle and Life to Your Web Pages

Author: Ethan Brown

Publisher: N.A

ISBN: 9781491914915

Category: Computers

Page: 348

View: 6158

This is an exciting time to learn JavaScript. Now that the latest JavaScript specification ECMAScript 6.0 (ES6) has been finalized, learning how to develop high-quality applications with this language is easier and more satisfying than ever. This practical book takes programmers (amateurs and pros alike) on a no-nonsense tour of ES6, along with some related tools and techniques. Author Ethan Brown ("Web Development with Node and Express") not only guides you through simple and straightforward topics (variables, control flow, arrays), but also covers complex concepts such as functional and asynchronous programming. You ll learn how to create powerful and responsive web applications on the client, or with Node.js on the server.Use ES6 today and transcompile code to portable ES5Translate data into a format that JavaScript can useUnderstand the basic usage and mechanics of JavaScript functionsExplore objects and object-oriented programmingTackle new concepts such as iterators, generators, and proxiesGrasp the complexities of asynchronous programmingWork with the Document Object Model for browser-based appsLearn Node.js fundamentals for developing server-side applications"

Mastering SciPy

Author: Francisco J. Blanco-Silva

Publisher: Packt Publishing Ltd

ISBN: 1783984759

Category: Computers

Page: 404

View: 4610

Implement state-of-the-art techniques to visualize solutions to challenging problems in scientific computing, with the use of the SciPy stack About This Book Master the theory and algorithms behind numerical recipes and how they can be applied to real-world problems Learn to combine the most appropriate built-in functions from the SciPy stack by understanding the connection between the sources of your problem, volume of data, or computer architecture A comprehensive coverage of all the mathematical techniques needed to solve the presented topics, with a discussion of the relevant algorithms built in the SciPy stack Who This Book Is For If you are a mathematician, engineer, or computer scientist with a proficiency in Python and familiarity with IPython, this is the book for you. Some basic knowledge of numerical methods in scientific computing would be helpful. What You Will Learn Master relevant algorithms used in symbolic or numerical mathematics to address approximation, interpolation, differentiation, integration, root-finding, and optimization of scalar or multi-variate functions Develop different algorithms and strategies to efficiently store and manipulate large matrices of data, in particular to solve systems of linear equations, or compute their eigenvalues/eigenvectors Understand how to model physical problems with systems of differential equations and distinguish the factors that dictate the strategies to solve them Perform statistical analysis, hypothesis test design and resolution, or data mining at a higher level, and apply them to real-life problems in the field of data analysis Gain insights on the power of distances, Delaunay triangulations and Voronoi diagrams for Computational Geometry, and apply them to various engineering problems Familiarize yourself with different techniques in signal/image processing, including filtering audio, images, or video to extract information, features, or remove components In Detail The SciPy stack is a collection of open source libraries of the powerful scripting language Python, together with its interactive shells. This environment offers a cutting-edge platform for numerical computation, programming, visualization and publishing, and is used by some of the world's leading mathematicians, scientists, and engineers. It works on any operating system that supports Python and is very easy to install, and completely free of charge! It can effectively transform into a data-processing and system-prototyping environment, directly rivalling MATLAB and Octave. This book goes beyond a mere description of the different built-in functions coded in the libraries from the SciPy stack. It presents you with a solid mathematical and computational background to help you identify the right tools for each problem in scientific computing and visualization. You will gain an insight into the best practices with numerical methods depending on the amount or type of data, properties of the mathematical tools employed, or computer architecture, among other factors. The book kicks off with a concise exploration of the basics of numerical linear algebra and graph theory for the treatment of problems that handle large data sets or matrices. In the subsequent chapters, you will delve into the depths of algorithms in symbolic algebra and numerical analysis to address modeling/simulation of various real-world problems with functions (through interpolation, approximation, or creation of systems of differential equations), and extract their representing features (zeros, extrema, integration or differentiation). Lastly, you will move on to advanced concepts of data analysis, image/signal processing, and computational geometry. Style and approach Packed with real-world examples, this book explores the mathematical techniques needed to solve the presented topics, and focuses on the algorithms built in the SciPy stack.

Python in a Nutshell

Author: Alex Martelli

Publisher: "O'Reilly Media, Inc."

ISBN: 0596100469

Category: Computers

Page: 695

View: 3478

Demonstrates the programming language's strength as a Web development tool, covering syntax, data types, built-ins, the Python standard module library, and real world examples.

Mastering Python Scientific Computing

Author: Hemant Kumar Mehta

Publisher: Packt Publishing Ltd

ISBN: 1783288833

Category: Computers

Page: 300

View: 9149

A complete guide for Python programmers to master scientific computing using Python APIs and tools About This Book The basics of scientific computing to advanced concepts involving parallel and large scale computation are all covered. Most of the Python APIs and tools used in scientific computing are discussed in detail The concepts are discussed with suitable example programs Who This Book Is For If you are a Python programmer and want to get your hands on scientific computing, this book is for you. The book expects you to have had exposure to various concepts of Python programming. What You Will Learn Fundamentals and components of scientific computing Scientific computing data management Performing numerical computing using NumPy and SciPy Concepts and programming for symbolic computing using SymPy Using the plotting library matplotlib for data visualization Data analysis and visualization using Pandas, matplotlib, and IPython Performing parallel and high performance computing Real-life case studies and best practices of scientific computing In Detail In today's world, along with theoretical and experimental work, scientific computing has become an important part of scientific disciplines. Numerical calculations, simulations and computer modeling in this day and age form the vast majority of both experimental and theoretical papers. In the scientific method, replication and reproducibility are two important contributing factors. A complete and concrete scientific result should be reproducible and replicable. Python is suitable for scientific computing. A large community of users, plenty of help and documentation, a large collection of scientific libraries and environments, great performance, and good support makes Python a great choice for scientific computing. At present Python is among the top choices for developing scientific workflow and the book targets existing Python developers to master this domain using Python. The main things to learn in the book are the concept of scientific workflow, managing scientific workflow data and performing computation on this data using Python. The book discusses NumPy, SciPy, SymPy, matplotlib, Pandas and IPython with several example programs. Style and approach This book follows a hands-on approach to explain the complex concepts related to scientific computing. It details various APIs using appropriate examples.

Python Machine Learning By Example

Author: Yuxi (Hayden) Liu

Publisher: Packt Publishing Ltd

ISBN: 178355312X

Category: Computers

Page: 254

View: 7423

Take tiny steps to enter the big world of data science through this interesting guide About This Book Learn the fundamentals of machine learning and build your own intelligent applications Master the art of building your own machine learning systems with this example-based practical guide Work with important classification and regression algorithms and other machine learning techniques Who This Book Is For This book is for anyone interested in entering the data science stream with machine learning. Basic familiarity with Python is assumed. What You Will Learn Exploit the power of Python to handle data extraction, manipulation, and exploration techniques Use Python to visualize data spread across multiple dimensions and extract useful features Dive deep into the world of analytics to predict situations correctly Implement machine learning classification and regression algorithms from scratch in Python Be amazed to see the algorithms in action Evaluate the performance of a machine learning model and optimize it Solve interesting real-world problems using machine learning and Python as the journey unfolds In Detail Data science and machine learning are some of the top buzzwords in the technical world today. A resurging interest in machine learning is due to the same factors that have made data mining and Bayesian analysis more popular than ever. This book is your entry point to machine learning. This book starts with an introduction to machine learning and the Python language and shows you how to complete the setup. Moving ahead, you will learn all the important concepts such as, exploratory data analysis, data preprocessing, feature extraction, data visualization and clustering, classification, regression and model performance evaluation. With the help of various projects included, you will find it intriguing to acquire the mechanics of several important machine learning algorithms – they are no more obscure as they thought. Also, you will be guided step by step to build your own models from scratch. Toward the end, you will gather a broad picture of the machine learning ecosystem and best practices of applying machine learning techniques. Through this book, you will learn to tackle data-driven problems and implement your solutions with the powerful yet simple language, Python. Interesting and easy-to-follow examples, to name some, news topic classification, spam email detection, online ad click-through prediction, stock prices forecast, will keep you glued till you reach your goal. Style and approach This book is an enticing journey that starts from the very basics and gradually picks up pace as the story unfolds. Each concept is first succinctly defined in the larger context of things, followed by a detailed explanation of their application. Every concept is explained with the help of a project that solves a real-world problem, and involves hands-on work—giving you a deep insight into the world of machine learning. With simple yet rich language—Python—you will understand and be able to implement the examples with ease.

Annotated Algorithms in Python

With Applications in Physics, Biology, and Finance

Author: Massimo Di Pierro

Publisher: Experts4solutions

ISBN: 9780991160402

Category: Computer algorithms

Page: 390

View: 6922

This book is assembled from lectures given by the author over a period of 10 years at the School of Computing of DePaul University. The lectures cover multiple classes, including Analysis and Design of Algorithms, Scientific Computing, Monte Carlo Simulations, and Parallel Algorithms. These lectures teach the core knowledge required by any scientist interested in numerical algorithms and by students interested in computational finance.

Mastering Predictive Analytics with Python

Author: Joseph Babcock

Publisher: Packt Publishing Ltd

ISBN: 1785889826

Category: Computers

Page: 334

View: 9064

Exploit the power of data in your business by building advanced predictive modeling applications with Python About This Book Master open source Python tools to build sophisticated predictive models Learn to identify the right machine learning algorithm for your problem with this forward-thinking guide Grasp the major methods of predictive modeling and move beyond the basics to a deeper level of understanding Who This Book Is For This book is designed for business analysts, BI analysts, data scientists, or junior level data analysts who are ready to move from a conceptual understanding of advanced analytics to an expert in designing and building advanced analytics solutions using Python. You're expected to have basic development experience with Python. What You Will Learn Gain an insight into components and design decisions for an analytical application Master the use Python notebooks for exploratory data analysis and rapid prototyping Get to grips with applying regression, classification, clustering, and deep learning algorithms Discover the advanced methods to analyze structured and unstructured data Find out how to deploy a machine learning model in a production environment Visualize the performance of models and the insights they produce Scale your solutions as your data grows using Python Ensure the robustness of your analytic applications by mastering the best practices of predictive analysis In Detail The volume, diversity, and speed of data available has never been greater. Powerful machine learning methods can unlock the value in this information by finding complex relationships and unanticipated trends. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications to deliver insights that are of tremendous value to their organizations. In Mastering Predictive Analytics with Python, you will learn the process of turning raw data into powerful insights. Through case studies and code examples using popular open-source Python libraries, this book illustrates the complete development process for analytic applications and how to quickly apply these methods to your own data to create robust and scalable prediction services. Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates not only how these methods work, but how to implement them in practice. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring the insights of predictive modeling to life Style and approach This book emphasizes on explaining methods through example data and code, showing you templates that you can quickly adapt to your own use cases. It focuses on both a practical application of sophisticated algorithms and the intuitive understanding necessary to apply the correct method to the problem at hand. Through visual examples, it also demonstrates how to convey insights through insightful charts and reporting.

Machine Learning in Python

Essential Techniques for Predictive Analysis

Author: Michael Bowles

Publisher: John Wiley & Sons

ISBN: 1118961749

Category: Computers

Page: 336

View: 6229

This book shows readers how they can successfully analyze data using only two core machine learning algorithms---and how to do so using the popular Python programming language. These algorithms deal with common scenarios faced by all data analysts and data scientists. This book focuses on two algorithm families (linear methods and ensemble methods) that effectively predict outcomes. This type of problem covers a multitude of use cases (what ad to place on a web page, predicting prices in securities markets, detecting credit card fraud, etc.). The focus on two families gives enough room for full descriptions of the mechanisms at work in the algorithms. Then the code examples serve to illustrate the workings of the machinery with specific hackable code. The author will explain in simple terms, using no complex math, how these algorithms work, and will then show how to apply them in Python. He will also provide advice on how to select from among these algorithms, and will show how to prepare the data, and how to use the trained models in practice. The author begins with an overview of the two core algorithms, explaining the types of problems solved by each one. He then introduces a core set of Python programming techniques that can be used to apply these algorithms. The author shows various techniques for building predictive models that solve a range of problems, from simple to complex; he also shows how to measure the performance of each model to ensure you use the right one. The following chapters provide a deep dive into each of the two algorithms: penalized linear regression and ensemble methods. Chapters will show how to apply each algorithm in Python. Readers can directly use the sample code to build their own solutions.

Professional Node.js

Building Javascript Based Scalable Software

Author: Pedro Teixeira

Publisher: John Wiley & Sons

ISBN: 1118240561

Category: Computers

Page: 408

View: 5670

Learn to build fast and scalable software in JavaScript with Node.js Node.js is a powerful and popular new framework for writing scalable network programs using JavaScript. This no nonsense book begins with an overview of Node.js and then quickly dives into the code, core concepts, and APIs. In-depth coverage pares down the essentials to cover debugging, unit testing, and flow control so that you can start building and testing your own modules right away. Covers node and asynchronous programming main concepts Addresses the basics: modules, buffers, events, and timers Explores streams, file systems, networking, and automated unit testing Goes beyond the basics, and shares techniques and tools for debugging, unit testing, and flow control If you already know JavaScript and are curious about the power of Node.js, then this is the ideal book for you.

How to Think About Algorithms

Author: Jeff Edmonds

Publisher: Cambridge University Press

ISBN: 1139471759

Category: Computers

Page: N.A

View: 2323

This textbook, for second- or third-year students of computer science, presents insights, notations, and analogies to help them describe and think about algorithms like an expert, without grinding through lots of formal proof. Solutions to many problems are provided to let students check their progress, while class-tested PowerPoint slides are on the web for anyone running the course. By looking at both the big picture and easy step-by-step methods for developing algorithms, the author guides students around the common pitfalls. He stresses paradigms such as loop invariants and recursion to unify a huge range of algorithms into a few meta-algorithms. The book fosters a deeper understanding of how and why each algorithm works. These insights are presented in a careful and clear way, helping students to think abstractly and preparing them for creating their own innovative ways to solve problems.

Data Science Fundamentals for Python and MongoDB

Author: David Paper

Publisher: Apress

ISBN: 1484235975

Category: Computers

Page: 214

View: 5586

Build the foundational data science skills necessary to work with and better understand complex data science algorithms. This example-driven book provides complete Python coding examples to complement and clarify data science concepts, and enrich the learning experience. Coding examples include visualizations whenever appropriate. The book is a necessary precursor to applying and implementing machine learning algorithms. The book is self-contained. All of the math, statistics, stochastic, and programming skills required to master the content are covered. In-depth knowledge of object-oriented programming isn’t required because complete examples are provided and explained. Data Science Fundamentals with Python and MongoDB is an excellent starting point for those interested in pursuing a career in data science. Like any science, the fundamentals of data science are a prerequisite to competency. Without proficiency in mathematics, statistics, data manipulation, and coding, the path to success is “rocky” at best. The coding examples in this book are concise, accurate, and complete, and perfectly complement the data science concepts introduced. What You'll Learn Prepare for a career in data science Work with complex data structures in Python Simulate with Monte Carlo and Stochastic algorithms Apply linear algebra using vectors and matrices Utilize complex algorithms such as gradient descent and principal component analysis Wrangle, cleanse, visualize, and problem solve with data Use MongoDB and JSON to work with data Who This Book Is For The novice yearning to break into the data science world, and the enthusiast looking to enrich, deepen, and develop data science skills through mastering the underlying fundamentals that are sometimes skipped over in the rush to be productive. Some knowledge of object-oriented programming will make learning easier.

Pro Python

Author: Marty Alchin,J. Burton Browning

Publisher: Apress

ISBN: 1484203348

Category: Computers

Page: 384

View: 7151

You’ve learned the basics of Python, but how do you take your skills to the next stage? Even if you know enough to be productive, there are a number of features that can take you to the next level in Python. Pro Python, Second Edition explores concepts and features normally left to experimentation, allowing you to be even more productive and creative. In addition to pure code concerns, Pro Python develops your programming techniques and approaches, which will help make you a better Python programmer. This book will improve not only your code but also your understanding and interaction with the many established Python communities. This book takes your Python knowledge and coding skills to the next level. It shows you how to write clean, innovative code that will be respected by your peers. With this book, make your code do more with introspection and meta-programming. And learn and later use the nuts and bolts of an application, tier-by-tier as a complex case study along the way. For more information, including a link to the source code referenced in the book, please visit http://propython.com/.

Clean Code in Python

Refactor your legacy code base

Author: Mariano Anaya

Publisher: Packt Publishing Ltd

ISBN: 1788837061

Category: Computers

Page: 332

View: 6641

Getting the most out of Python to improve your codebase Key Features Save maintenance costs by learning to fix your legacy codebase Learn the principles and techniques of refactoring Apply microservices to your legacy systems by implementing practical techniques Book Description Python is currently used in many different areas such as software construction, systems administration, and data processing. In all of these areas, experienced professionals can find examples of inefficiency, problems, and other perils, as a result of bad code. After reading this book, readers will understand these problems, and more importantly, how to correct them. The book begins by describing the basic elements of writing clean code and how it plays an important role in Python programming. You will learn about writing efficient and readable code using the Python standard library and best practices for software design. You will learn to implement the SOLID principles in Python and use decorators to improve your code. The book delves more deeply into object oriented programming in Python and shows you how to use objects with descriptors and generators. It will also show you the design principles of software testing and how to resolve software problems by implementing design patterns in your code. In the final chapter we break down a monolithic application to a microservice one, starting from the code as the basis for a solid platform. By the end of the book, you will be proficient in applying industry approved coding practices to design clean, sustainable and readable Python code. What you will learn Set up tools to effectively work in a development environment Explore how the magic methods of Python can help us write better code Examine the traits of Python to create advanced object-oriented design Understand removal of duplicated code using decorators and descriptors Effectively refactor code with the help of unit tests Learn to implement the SOLID principles in Python Who this book is for This book will appeal to team leads, software architects and senior software engineers who would like to work on their legacy systems to save cost and improve efficiency. A strong understanding of Programming is assumed.