Probability for Statisticians

Author: Galen R. Shorack

Publisher: Springer

ISBN: 3319522078

Category: Mathematics

Page: 510

View: 895

The choice of examples used in this text clearly illustrate its use for a one-year graduate course. The material to be presented in the classroom constitutes a little more than half the text, while the rest of the text provides background, offers different routes that could be pursued in the classroom, as well as additional material that is appropriate for self-study. Of particular interest is a presentation of the major central limit theorems via Steins method either prior to or alternative to a characteristic function presentation. Additionally, there is considerable emphasis placed on the quantile function as well as the distribution function, with both the bootstrap and trimming presented. The section on martingales covers censored data martingales.


Author: Jim Pitman

Publisher: Springer Science & Business Media

ISBN: 1461243742

Category: Mathematics

Page: 560

View: 4972

This is a text for a one-quarter or one-semester course in probability, aimed at students who have done a year of calculus. The book is organised so a student can learn the fundamental ideas of probability from the first three chapters without reliance on calculus. Later chapters develop these ideas further using calculus tools. The book contains more than the usual number of examples worked out in detail. The most valuable thing for students to learn from a course like this is how to pick up a probability problem in a new setting and relate it to the standard body of theory. The more they see this happen in class, and the more they do it themselves in exercises, the better. The style of the text is deliberately informal. My experience is that students learn more from intuitive explanations, diagrams, and examples than they do from theorems and proofs. So the emphasis is on problem solving rather than theory.

Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse

Author: Kai L. Chung

Publisher: Springer-Verlag

ISBN: 3642670334

Category: Mathematics

Page: 346

View: 8655

Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1

Measure Theory and Probability Theory

Author: Krishna B. Athreya,Soumendra N. Lahiri

Publisher: Springer Science & Business Media

ISBN: 038732903X

Category: Business & Economics

Page: 618

View: 2878

This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix. The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement. Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales. Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes. Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.

Probability for Statistics and Machine Learning

Fundamentals and Advanced Topics

Author: Anirban DasGupta

Publisher: Springer Science & Business Media

ISBN: 9781441996343

Category: Mathematics

Page: 784

View: 4913

This book provides a versatile and lucid treatment of classic as well as modern probability theory, while integrating them with core topics in statistical theory and also some key tools in machine learning. It is written in an extremely accessible style, with elaborate motivating discussions and numerous worked out examples and exercises. The book has 20 chapters on a wide range of topics, 423 worked out examples, and 808 exercises. It is unique in its unification of probability and statistics, its coverage and its superb exercise sets, detailed bibliography, and in its substantive treatment of many topics of current importance. This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability.

Probability and Statistical Inference

Probability. vol. 1

Author: J.G. Kalbfleisch,John G. Kalbfleisch

Publisher: Springer Science & Business Media

ISBN: 9780387961446

Category: Mathematics

Page: 343

View: 1668

This book is in two volumes, and is intended as a text for introductory courses in probability and statistics at the second or third year university level. It emphasizes applications and logical principles rather than math ematical theory. A good background in freshman calculus is sufficient for most of the material presented. Several starred sections have been included as supplementary material. Nearly 900 problems and exercises of varying difficulty are given, and Appendix A contains answers to about one-third of them. The first volume (Chapters 1-8) deals with probability models and with mathematical methods for describing and manipulating them. It is similar in content and organization to the 1979 edition. Some sections have been rewritten and expanded-for example, the discussions of independent random variables and conditional probability. Many new exercises have been added. In the second volume (Chapters 9-16), probability models are used as the basis for the analysis and interpretation of data. This material has been revised extensively. Chapters 9 and 10 describe the use of the like lihood function in estimation problems, as in the 1979 edition. Chapter 11 then discusses frequency properties of estimation procedures, and in troduces coverage probability and confidence intervals. Chapter 12 de scribes tests of significance, with applications primarily to frequency data.

An Intermediate Course in Probability

Author: Allan Gut

Publisher: Springer Science & Business Media

ISBN: 1441901620

Category: Mathematics

Page: 303

View: 1044

This is the only book that gives a rigorous and comprehensive treatment with lots of examples, exercises, remarks on this particular level between the standard first undergraduate course and the first graduate course based on measure theory. There is no competitor to this book. The book can be used in classrooms as well as for self-study.

Probability via Expectation

Author: Peter Whittle

Publisher: Springer Science & Business Media

ISBN: 9780387989556

Category: Mathematics

Page: 352

View: 6297

This book has exerted a continuing appeal since its original publication in 1970. It develops the theory of probability from axioms on the expectation functional rather than on probability measure, demonstrates that the standard theory unrolls more naturally and economically this way, and that applications of real interest can be addressed almost immediately. New to this edition are chapters giving an economical introduction to dynamic programming, which is then applied to the allocation problems represented by portfolio selection and the multi-armed bandit. The investment theme is continued with a critical investigation of the concept of risk-free trading and the associated Black-Sholes formula, while another new chapter develops the basic ideas of large deviations.

Probability and Statistics with R, Second Edition

Author: Maria Dolores Ugarte,Ana F. Militino,Alan T. Arnholt

Publisher: CRC Press

ISBN: 1466504404

Category: Mathematics

Page: 983

View: 5204

Cohesively Incorporates Statistical Theory with R Implementation Since the publication of the popular first edition of this comprehensive textbook, the contributed R packages on CRAN have increased from around 1,000 to over 6,000. Designed for an intermediate undergraduate course, Probability and Statistics with R, Second Edition explores how some of these new packages make analysis easier and more intuitive as well as create more visually pleasing graphs. New to the Second Edition Improvements to existing examples, problems, concepts, data, and functions New examples and exercises that use the most modern functions Coverage probability of a confidence interval and model validation Highlighted R code for calculations and graph creation Gets Students Up to Date on Practical Statistical Topics Keeping pace with today’s statistical landscape, this textbook expands your students’ knowledge of the practice of statistics. It effectively links statistical concepts with R procedures, empowering students to solve a vast array of real statistical problems with R. Web Resources A supplementary website offers solutions to odd exercises and templates for homework assignments while the data sets and R functions are available on CRAN.


Author: Alan F. Karr

Publisher: Springer

ISBN: 0387940715

Category: Mathematics

Page: 283

View: 3996

This book offers a straightforward introduction to the mathematical theory of probability. It presents the central results and techniques of the subject in a complete and self-contained account. As a result, the emphasis is on giving results in simple forms with clear proofs and to eschew more powerful forms of theorems which require technically involved proofs. Throughout there are a wide variety of exercises to illustrate and to develop ideas in the text.

Grundbegriffe der Wahrscheinlichkeitsrechnung

Author: A. Kolomogoroff

Publisher: Springer-Verlag

ISBN: 3642498884

Category: Mathematics

Page: 62

View: 5374

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Asymptotic Theory of Statistics and Probability

Author: Anirban DasGupta

Publisher: Springer Science & Business Media

ISBN: 0387759700

Category: Mathematics

Page: 722

View: 368

This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.

Introduction to Statistical Inference

Author: Jack C. Kiefer

Publisher: Springer Science & Business Media

ISBN: 146139578X

Category: Mathematics

Page: 334

View: 1589

This book is based upon lecture notes developed by Jack Kiefer for a course in statistical inference he taught at Cornell University. The notes were distributed to the class in lieu of a textbook, and the problems were used for homework assignments. Relying only on modest prerequisites of probability theory and cal culus, Kiefer's approach to a first course in statistics is to present the central ideas of the modem mathematical theory with a minimum of fuss and formality. He is able to do this by using a rich mixture of examples, pictures, and math ematical derivations to complement a clear and logical discussion of the important ideas in plain English. The straightforwardness of Kiefer's presentation is remarkable in view of the sophistication and depth of his examination of the major theme: How should an intelligent person formulate a statistical problem and choose a statistical procedure to apply to it? Kiefer's view, in the same spirit as Neyman and Wald, is that one should try to assess the consequences of a statistical choice in some quan titative (frequentist) formulation and ought to choose a course of action that is verifiably optimal (or nearly so) without regard to the perceived "attractiveness" of certain dogmas and methods.

Einführung in die Komplexe Analysis

Elemente der Funktionentheorie

Author: Wolfgang Fischer,Ingo Lieb

Publisher: Springer-Verlag

ISBN: 3834893773

Category: Mathematics

Page: 214

View: 2704

In den Bachelor-Studiengängen der Mathematik steht für die Komplexe Analysis (Funktionentheorie) oft nur eine einsemestrige 2-stündige Vorlesung zur Verfügung. Dieses Buch eignet sich als Grundlage für eine solche Vorlesung im 2. Studienjahr. Mit einer guten thematischen Auswahl, vielen Beispielen und ausführlichen Erläuterungen gibt dieses Buch eine Darstellung der Komplexen Analysis, die genau die Grundlagen und den wesentlichen Kernbestand dieses Gebietes enthält. Das Buch bietet über diese Grundausbildung hinaus weiteres Lehrmaterial als Ergänzung, sodass es auch für eine 3- oder 4 –stündige Vorlesung geeignet ist. Je nach Hörerkreis kann der Stoff unterschiedlich erweitert werden. So wurden für den „Bachelor Lehramt“ die geometrischen Aspekte der Komplexen Analysis besonders herausgearbeitet.

All of Statistics

A Concise Course in Statistical Inference

Author: Larry Wasserman

Publisher: Springer Science & Business Media

ISBN: 0387217363

Category: Mathematics

Page: 442

View: 7586

Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.

Einführung in Die Mathematische Statistik

Author: Leopold Schmetterer

Publisher: Springer-Verlag

ISBN: 3662259338

Category: Mathematics

Page: 597

View: 8166

Die Frage nach dem Aufgabenkreis der Statistik im allgemeinen kann nicht mit wenigen Worten umrissen werden. Wenn man etwas näher auf die geschichtliche Entwicklung des Begriffes Statistik eingeht\ so findet man, daß lange Zeit darunter nur die Beschrei bung von "Staatsmerkwürdigkeiten" (wie Bevölkerungszahl, Bo denbeschaffenheit, Sammlung wirtschaftlicher Daten) verstanden wurde. Erst in neuerer Zeit drang die statistische Betrachtungsweise auch in die Naturwissenschaften ein (BOLTZMANN, GIBBS, MAx WELL). Fußend auf dem Boden der seit Beginn dieses Jahrhunderts sich rasch entwickelnden Wahrscheinlichkeitstheorie hat dann ins besondere in den letzten dreißig Jahren auch die mathematische Statistik einen unerhörten Aufschwung genommen und die Metho den der statistischen Analyse mit einer kaum zu übersehenden Fülle von Gedanken bereichert. Statistische Überlegungen treten heute in den verschiedensten Wissensgebieten auf. Es genügt, wenn wir neben den Wirtschaftswissenschaften als Beispiele die Astronomie, die Biologie, die Medizin, die Psychologie, die Physik und die Soziologie anführen. Wenn es also, wie gesagt, nicht leicht ist, den allgemeinen Be griff der Statistik kurz zu charakterisieren, so geht man doch wohl nicht fehl, wenn man feststellt, daß sich die Statistik mit dem Studium von Erscheinungen befaßt, die entweder eine große Zahl von Individuen betreffen, oder sonst in irgendeiner Weise eine Viel falt von Einzelerscheinungen zusammenfassen. Man kann somit als ein Charakteristikum der Statistik das Studium der Massen erscheinungen betrachten. Es ist eine Erfahrungstatsache, daß bei Massenerscheinungen Gesetzmäßigkeiten nachgewiesen werden können, die bei Einzelerscheinungen kein Gegenstück haben. Das 1 Vgl. W. WrNKLER, Grundriß der Statistik I, 2.

Fundamentals of Mathematical Statistics

Probability for Statistics

Author: Hung T. Nguyen,Gerald S. Rogers

Publisher: Springer Science & Business Media

ISBN: 1461210135

Category: Mathematics

Page: 432

View: 4599

This is the first half of a text for a two semester course in mathematical statistics at the senior/graduate level for those who need a strong background in statistics as an essential tool in their career. To study this text, the reader needs a thorough familiarity with calculus including such things as Jacobians and series but somewhat less intense familiarity with matrices including quadratic forms and eigenvalues. For convenience, these lecture notes were divided into two parts: Volume I, Probability for Statistics, for the first semester, and Volume II, Statistical Inference, for the second. We suggest that the following distinguish this text from other introductions to mathematical statistics. 1. The most obvious thing is the layout. We have designed each lesson for the (U.S.) 50 minute class; those who study independently probably need the traditional three hours for each lesson. Since we have more than (the U.S. again) 90 lessons, some choices have to be made. In the table of contents, we have used a * to designate those lessons which are "interesting but not essential" (INE) and may be omitted from a general course; some exercises and proofs in other lessons are also "INE". We have made lessons of some material which other writers might stuff into appendices. Incorporating this freedom of choice has led to some redundancy, mostly in definitions, which may be beneficial.

Mathematical Statistics: Exercises and Solutions

Author: Jun Shao

Publisher: Springer Science & Business Media

ISBN: 0387282769

Category: Mathematics

Page: 360

View: 6942

The exercises are grouped into seven chapters with titles matching those in the author's Mathematical Statistics. Can also be used as a stand-alone because exercises and solutions are comprehensible independently of their source, and notation and terminology are explained in the front of the book. Suitable for self-study for a statistics Ph.D. qualifying exam.

Statistics and Finance

An Introduction

Author: David Ruppert

Publisher: Springer

ISBN: 1441968768

Category: Business & Economics

Page: 474

View: 8018

This book emphasizes the applications of statistics and probability to finance. The basics of these subjects are reviewed and more advanced topics in statistics, such as regression, ARMA and GARCH models, the bootstrap, and nonparametric regression using splines, are introduced as needed. The book covers the classical methods of finance and it introduces the newer area of behavioral finance. Applications and use of MATLAB and SAS software are stressed. The book will serve as a text in courses aimed at advanced undergraduates and masters students. Those in the finance industry can use it for self-study.

Fundamentals of Probability: A First Course

Author: Anirban DasGupta

Publisher: Springer Science & Business Media

ISBN: 1441957804

Category: Mathematics

Page: 450

View: 8292

Probability theory is one branch of mathematics that is simultaneously deep and immediately applicable in diverse areas of human endeavor. It is as fundamental as calculus. Calculus explains the external world, and probability theory helps predict a lot of it. In addition, problems in probability theory have an innate appeal, and the answers are often structured and strikingly beautiful. A solid background in probability theory and probability models will become increasingly more useful in the twenty-?rst century, as dif?cult new problems emerge, that will require more sophisticated models and analysis. Thisisa text onthe fundamentalsof thetheoryofprobabilityat anundergraduate or ?rst-year graduate level for students in science, engineering,and economics. The only mathematical background required is knowledge of univariate and multiva- ate calculus and basic linear algebra. The book covers all of the standard topics in basic probability, such as combinatorial probability, discrete and continuous distributions, moment generating functions, fundamental probability inequalities, the central limit theorem, and joint and conditional distributions of discrete and continuous random variables. But it also has some unique features and a forwa- looking feel.