*The Geometric Properties of Ellipses, Parabolas and Hyperbolas*

**Author**: J. W. Downs

**Publisher:** Courier Corporation

**ISBN:**

**Category:** Mathematics

**Page:** 112

**View:** 533

Using examples from everyday life, this text studies ellipses, parabolas, and hyperbolas. Explores their ancient origins and describes the reflective properties and roles of curves in design applications. 1993 edition. Includes 98 figures.

Lively and authoritative, this survey by a renowned physicist explains the formation of the galaxies and defines the concept of an ever-expanding universe in simple terms. 1961 edition. 40 figures.

Phase space, ergodic problems, central limit theorem, dispersion and distribution of sum functions. Chapters include Geometry and Kinematics of the Phase Space; Ergodic Problem; Reduction to the Problem of the Theory of Probability; Application of the Central Limit Theorem; Ideal Monatomic Gas; The Foundation of Thermodynamics; and more.

Focusing on the principles of quantum mechanics, this text for upper-level undergraduates and graduate students introduces and resolves special physical problems with more than 100 exercises. 1967 edition.

Designed to familiarize undergraduates with the methods of vector algebra and vector calculus, this text offers both a clear view of the abstract theory as well as a concise survey of the theory's applications to various branches of pure and applied mathematics. A chapter on differential geometry introduces readers to the study of this subject by the methods of vector algebra. The next section explores the many aspects of the theory of mechanics adaptable to the use of vectors, and a full discussion of the vector operator "nabla" proceeds to a treatment of potential theory and Laplace's equation. This includes applications to the theories of gravitation, hydrodynamics, and electricity. A brief chapter on four-dimensional vectors concludes the text.

Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.

An imaginative introduction to number theory, this unique approach employs a pair of fictional characters, Ant and Gnam. Ant leads Gnam through a variety of theories, and together, they put the theories into action—applying linear diophantine equations to football scoring, using a black-magic device to simplify problems in modular structures, and developing intriguing modifications to the rules of chess. Appropriate for anyone familiar with algebra at the high-school level, The Theory of Remainders offers a captivating introduction to both number theory and abstract algebra. Both elementary and challenging, it provides a view of mathematics as a conceptual net and illustrates the differences between conceptual and paraconceptual claims—an excellent start to expanding students' perspectives on mathematics. Exercises throughout the book form an integral part of the text, extending students' experience with the concepts under discussion and presenting opportunities to observe patterns. In addition to the exercises, a series of optional problems allows more advanced readers to further develop the concepts.

Geared toward upper-level undergraduate students, this text begins with a straightforward account, accompanied by simple examples of a variety of integral equations and the methods of their solution. The treatment becomes gradually more abstract, with discussions of Hilbert space and linear operators, the resolvent, Fredholm theory, and more. 1977 edition.

An investigation of the logical foundations of the theory behind Markov random processes, this text explores subprocesses, transition functions, and conditions for boundedness and continuity. Rather than focusing on probability measures individually, the work explores connections between functions. An elementary grasp of the theory of Markov processes is assumed. Starting with a brief survey of relevant concepts and theorems from measure theory, the text investigates operations that permit an inspection of the class of Markov processes corresponding to a given transition function. It advances to the more complicated operations of generating a subprocess, followed by examinations of the construction of Markov processes with given transition functions, the concept of a strictly "Markov process," and the conditions required for boundedness and continuity of a Markov process. Addenda, notes, references, and indexes supplement the text.

This text considers waves the great unifying concept of physics, employing minimal mathematics to explore behavior common to earthquake waves, ocean waves, sound waves, and mechanical waves. 1974 edition.