**Author**: Horst R. Thieme

**Publisher:** Princeton University Press

**ISBN:** 0691187657

**Category:** Science

**Page:** N.A

**View:** 2401

How do plant and animal populations change genetically to evolve and adapt to their local environments? How do populations grow and interact with one another through competition and predation? How does behaviour influence ecology and evolution? Introduction to Population Biology covers all these areas and more. Taking a quantitative and Darwinian perspective, the basic theory of population processes is developed using mathematical models. To allow students of biology, ecology and evolution to gain a real understanding of the subject, key features include: • step-by-step instructions for spreadsheet simulations of many basic equations to explore the outcomes or predictions of models • worked examples showing how the equations are applied to biological questions • problem sets together with detailed solutions to help the reader test their understanding • real-life examples to help the reader relate the theory to the natural world

The lecture notes contained in this volume were presented at the AMS Short Course on Population Biology, held August 6-7, 1983, in Albany, New York in conjunction with the summer meeting of the American Mathematical Society. These notes will acquaint the reader with the mathematical ideas that pervade almost every level of thinking in population biology and provide an introduction to the many applications of mathematics in the field. Research mathematicians, college teachers of mathematics, and graduate students all should find this book of interest. Population biology is probably the oldest area in mathematical biology, but remains a constant source of new mathematical problems and the area of biology best integrated with mathematical theory. The need for mathematical approaches has never been greater, as evolutionary theory is challenged by new interpretations of the paleontological record and new discoveries at the molecular level, as world resources for feeding populations become limiting, as the problems of pollution increase, and as both animal and plant epidemiological problems receive closer scrutiny. A background of advanced calculus, introduction to ordinary and partial differential equations, and linear algebra will make the book accessible. All of the papers included have high research value. A list of the contents follows.

Population biology has been investigated quantitatively for many decades, resulting in a rich body of scientific literature. Ecologists often avoid this literature, put off by its apparently formidable mathematics. This textbook provides an introduction to the biology and ecology of populations by emphasizing the roles of simple mathematical models in explaining the growth and behavior of populations. The author only assumes acquaintance with elementary calculus, and provides tutorial explanations where needed to develop mathematical concepts. Examples, problems, extensive marginal notes and numerous graphs enhance the book's value to students in classes ranging from population biology and population ecology to mathematical biology and mathematical ecology. The book will also be useful as a supplement to introductory courses in ecology.

The goal of this book is to search for a balance between simple and analyzable models and unsolvable models which are capable of addressing important questions on population biology. Part I focusses on single species simple models including those which have been used to predict the growth of human and animal population in the past. Single population models are, in some sense, the building blocks of more realistic models -- the subject of Part II. Their role is fundamental to the study of ecological and demographic processes including the role of population structure and spatial heterogeneity -- the subject of Part III. This book, which will include both examples and exercises, is of use to practitioners, graduate students, and scientists working in the field.

Fascinated by the diversity of living organisms, humans have always been curious about its origin. Darwin was the first to provide the scholary and persuasive thesis for gradual evolution and speciation under natural selection. Although we now have much information on evolution, we still don't understand it in detail. Many questions still remain open due to the complexity and multiplicity of interacting factors. Several approaches mainly arising from population ecology and genetics are presented in this book in order to help understand genetic variation and evolution.

This book, written in 1977, brought together for the first time, the current knowledge of plants that might be relevant to understanding their population biology. ¿This monumental volume did more than summarize the state of plant biology; ¿it linked the conceptual and theoretical developments in population ecology, mostly derived from the study of animals, with field observations and experimental evidence of population regulation and life history evolution in plants. ¿¿The field of population biology was already well established in the 1960s although with a clear zoocentric emphasis, however, it is because of Harper¿s work that the field experienced a veritable explosion, reached maturity and became a mainstream scientific endeavour worldwide. This field is so vast now that it would be pointless, if not impossible, for someone to summarise it. It is precisely because of this that PBP is as relevant now as it was in 1977. John Harper¿s style of highlighting unanswered questions and the limitations of both theory and empirical evidence served and still serves as foundation for research agendas worldwide. Much remains to be done in this field and this alone makes PBP an essential element in the library of every student/researcher of population biology, whether interested in plants or animals.¿From the ¿Preface to the 2010 Printing¿ written by José Sarukhán, Rodolfo Dirzo and Miguel Franco.

Over a lifetime's work with the group, John Warham has firmly established himself as one of the foremost experts on these birds. In this book he completes the major survey started in his earlier work, The Petrels: Their Ecology and Breeding Systems. The text is comprehensive, well illustrated, and fully referenced. Together with the earlier, companion volume, this encyclopedic treatment presents an amazingly detailed, yet accessible introduction to this important, much-studied bird family, for the biologist, the conservation manager, and the dedicated amateur ornithologist. Key Features * Authored by an authoritative expert in the field * Explores an important, model group of birds * Appeals to a conservation interest

Extraordinary in the diversity of their lifestyles, insect parasitoids have become extremely important study organisms in the field of population biology, and they are the most frequently used agents in the biological control of insect pests. This book presents the ideas of seventeen international specialists, providing the reader not only with an overview but also with lively discussions of the most salient questions pertaining to the field today and prescriptions for avenues of future research. After a general introduction, the book divides into three main sections: population dynamics, population diversity, and population applications. The first section covers gaps in our knowledge in parasitoid behavior, parasitoid persistence, and how space and landscape affect dynamics. The contributions on population diversity consider how evolution has molded parasitoid populations and communities. The final section calls for novel approaches toward resolving the enigma of success in biological control and questions why parasitoids have been largely neglected in conservation biology. Parasitoid Population Biology will likely be an important influence on research well into the twenty-first century and will provoke discussion amongst parasitoid biologists and population biologists. In addition to the editors, the contributors are Carlos Bernstein, Jacques Brodeur, Jerome Casas, H.C.J. Godfray, Susan Harrison, Alan Hastings, Bradford A. Hawkins, George E. Heimpel, Marcel Holyoak, Nick Mills, Bernard D. Roitberg, Jens Roland, Michael R. Strand, Teja Tscharntke, and Minus van Baalen.

Population biology has had a long history of mathematical modeling. The 1920s and 1930s saw major strides with the work of Lotka and Volterra in ecology and Fisher, Haldane, and Wright in genetics. In recent years, much more sophisticated mathematical techniques have been brought to bear on questions in population biology. Simultaneously, advances in experimental and field work have produced a wealth of new data. While this growth has tended to fragment the field, one unifying theme is that similar mathematical questions arise in a range of biological contexts. This volume contains the proceedings of a symposium on Some Mathematical Questions in Biology, held in Chicago in 1987. The papers all deal with different aspects of population biology, but there are overlaps in the mathematical techniques used; for example, dynamics of nonlinear differential and difference equations form a common theme. The topics covered are cultural evolution, multilocus population genetics, spatially structured population genetics, chaos and the dynamics of epidemics, and the dynamics of ecological communities.

Hanski, a leading thinker in metapopulation ecology, studies checkerspot butterfly populations in Finland. Ehrlich, one of the leading ecologists and conservation biologist, investigates checkerspot butterfly populations in California. This book reports on and synthsizes the major long-term research of both workers' careers on the population biology of checkerspot butterflies.

This 2004 collection of essays deals with the foundation and historical development of population biology and its relationship to population genetics and population ecology on the one hand and to the rapidly growing fields of molecular quantitative genetics, genomics and bioinformatics on the other. Such an interdisciplinary treatment of population biology has never been attempted before. The volume is set in a historical context, but it has an up-to-date coverage of material in various related fields. The areas covered are the foundation of population biology, life history evolution and demography, density and frequency dependent selection, recent advances in quantitative genetics and bioinformatics, evolutionary case history of model organisms focusing on polymorphisms and selection, mating system evolution and evolution in the hybrid zones, and applied population biology including conservation, infectious diseases and human diversity. This is the third of three volumes published in honour of Richard Lewontin.

This book uses fundamental ideas in dynamical systems to answer questions of a biologic nature, in particular, questions about the behavior of populations given a relatively few hypotheses about the nature of their growth and interaction. The principal subject treated is that of coexistence under certain parameter ranges, while asymptotic methods are used to show competitive exclusion in other parameter ranges. Finally, some problems in genetics are posed and analyzed as problems in nonlinear ordinary differential equations.

An increasing variety of biological problems involving resource management, conservation and environmental quality have been dealt with using the principles of population biology (defined to include population dynamics, genetics and certain aspects of community ecology). There appears to be a mixed record of successes and failures and almost no critical synthesis or reviews that have attempted to discuss the reasons and ways in which population biology, with its remarkable theoretical as well as experimental advances, could find more useful application in agriculture, forestry, fishery, medicine and resource and environmental management. This book provides examples of state-of-the-art applications by a distinguished group of researchers in several fields. The diversity of topics richly illustrates the scientific and economic breadth of their discussions as well as epistemological and comparative analyses by the authors and editors. Several principles and common themes are emphasized and both strengths and potential sources of uncertainty in applications are discussed. This volume will hopefully stimulate new interdisciplinary avenues of problem-solving research.

This important title encompasses features of genetic processes in complexly organised population systems of salmonids, one of the most commercially valuable families of fish worldwide. Translated from the original work in Russian, the authors have taken the opportunity to update and revise the work, much of it appearing in the English language for the first time. Covering such important concepts as optimal gene diversity and the unfavourable influence of fishery and hatchery reproduction on the genetic structure of salmon populations, the authors have drawn together a huge wealth of information that will form the cornerstone of much new work in the future. The authors of Salmonid Fishes have between them many years of research experience and practical knowledge in the area and the English translation of this important work, which has been edited by Professor John Thorpe and Professor Gary Carvalho, provides vital information for all those involved in salmonid management, exploitation and conservation, including fish biologists, fisheries managers, conservation and population biologists, ecologists and geneticists.

This book is a careful integration of the social and biological sciences, drawing on anthropology, biology, human ecology and medicine to provide a comprehensive understanding of how our species adapts to natural and man-made environments. Part I presents techniques to adapt and apply demographic methods to small populations, particularly important for studying non-Western populations. Part II discusses the relationship of medical genetics to human adaptability and patterns of disease in non-Western populations. Part III covers capacity, climatic stress, and nutrition. Part IV presents methods for growth assessment and prediction and addresses the topic of aging. The final section, Part V, presents integrated case studies of human adaptation to high altitude, and patterns of modernization and stress resulting from cultural change.