**Author**: V. DHARMAIAH

**Publisher:** PHI Learning Pvt. Ltd.

**ISBN:**

**Category:** Mathematics

**Page:** 420

**View:** 294

This systematically-organized text on the theory of differential equations deals with the basic concepts and the methods of solving ordinary differential equations. Various existence theorems, properties of uniqueness, oscillation and stability theories, have all been explained with suitable examples to enhance students’ understanding of the subject. The book also discusses in sufficient detail the qualitative, the quantitative, and the approximation techniques, linear equations with variable and constants coefficients, regular singular points, and homogeneous equations with analytic coefficients. Finally, it explains Riccati equation, boundary value problems, the Sturm–Liouville problem, Green’s function, the Picard’s theorem, and the Sturm–Picone theorem. The text is supported by a number of worked-out examples to make the concepts clear, and it also provides a number of exercises help students test their knowledge and improve their skills in solving differential equations. The book is intended to serve as a text for the postgraduate students of mathematics and applied mathematics. It will also be useful to the candidates preparing to sit for the competitive examinations such as NET and GATE.

Few books on Ordinary Differential Equations (ODEs) have the elegant geometric insight of this one, which puts emphasis on the qualitative and geometric properties of ODEs and their solutions, rather than on routine presentation of algorithms. From the reviews: "Professor Arnold has expanded his classic book to include new material on exponential growth, predator-prey, the pendulum, impulse response, symmetry groups and group actions, perturbation and bifurcation." --SIAM REVIEW

Among the topics covered in this classic treatment are linear differential equations; solution in an infinite form; solution by definite integrals; algebraic theory; Sturmian theory and its later developments; much more. "Highly recommended" — Electronics Industries.

Ordinary Differential Equations covers the fundamentals of the theory of ordinary differential equations (ODEs), including an extensive discussion of the integration of differential inequalities, on which this theory relies heavily. In addition to these results, the text illustrates techniques involving simple topological arguments, fixed point theorems, and basic facts of functional analysis. Unlike many texts, which supply only the standard simplified theorems, this book presents the basic theory of ODEs in a general way. This SIAM reissue of the 1982 second edition covers invariant manifolds, perturbations, and dichotomies, making the text relevant to current studies of geometrical theory of differential equations and dynamical systems. In particular, Ordinary Differential Equations includes the proof of the Hartman-Grobman theorem on the equivalence of a nonlinear to a linear flow in the neighborhood of a hyperbolic stationary point, as well as theorems on smooth equivalences, the smoothness of invariant manifolds, and the reduction of problems on ODEs to those on "maps" (Poincaré). Audience: readers should have knowledge of matrix theory and the ability to deal with functions of real variables.

Though ordinary differential equations is taught as a core course to students in mathematics and applied mathematics, detailed coverage of the topics with sufficient examples is unique. Written by a mathematics professor and intended as a textbook for third- and fourth-year undergraduates, the five chapters of this publication give a precise account of higher order differential equations, power series solutions, special functions, existence and uniqueness of solutions, and systems of linear equations. Relevant motivation for different concepts in each chapter and discussion of theory and problems-without the omission of steps-sets Ordinary Differential Equations: A First Course apart from other texts on ODEs. Full of distinguishing examples and containing exercises at the end of each chapter, this lucid course book will promote self-study among students.

This introductory course in ordinary differential equations, intended for junior undergraduate students in applied mathematics, science and engineering, focuses on methods of solution and applications rather than theoretical analyses. Applications drawn mainly from dynamics, population biology and electric circuit theory are used to show how ordinary differential equations appear in the formulation of problems in science and engineering. The calculus required to comprehend this course is rather elementary, involving differentiation, integration and power series representation of only real functions of one variable. A basic knowledge of complex numbers and their arithmetic is also assumed, so that elementary complex functions which can be used for working out easily the general solutions of certain ordinary differential equations can be introduced. The pre-requisites just mentioned aside, the course is mainly self-contained. To promote the use of this course for self-study, suggested solutions are not only given to all set exercises, but they are also by and large complete with details.

"A book of great value . . . it should have a profound influence upon future research."--Mathematical Reviews. Hardcover edition. The foundations of the study of asymptotic series in the theory of differential equations were laid by Poincaré in the late 19th century, but it was not until the middle of this century that it became apparent how essential asymptotic series are to understanding the solutions of ordinary differential equations. Moreover, they have come to be seen as crucial to such areas of applied mathematics as quantum mechanics, viscous flows, elasticity, electromagnetic theory, electronics, and astrophysics. In this outstanding text, the first book devoted exclusively to the subject, the author concentrates on the mathematical ideas underlying the various asymptotic methods; however, asymptotic methods for differential equations are included only if they lead to full, infinite expansions. Unabridged Dover republication of the edition published by Robert E. Krieger Publishing Company, Huntington, N.Y., 1976, a corrected, slightly enlarged reprint of the original edition published by Interscience Publishers, New York, 1965. 12 illustrations. Preface. 2 bibliographies. Appendix. Index.

Designed as a text for both under and postgraduate students of mathematics and engineering, A Course in Ordinary Differential Equations deals with theory and methods of solutions as well as applications of ordinary differential equations. The treatment is lucid and gives a detailed account of Laplace transforms and their applications, Legendre and Bessel functions, and covers all the important numerical methods for differential equations.

A thorough, systematic first course in elementary differential equations for undergraduates in mathematics and science, requiring only basic calculus for a background. Includes many exercises and problems, with answers. Index.