## Ordinary Differential Equations and Dynamical Systems

Author: Gerald Teschl

Publisher: American Mathematical Soc.

ISBN: 0821883283

Category: Mathematics

Page: 356

View: 6799

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm-Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincare-Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman-Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale-Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

## Ordinary Differential Equations and Dynamical Systems

Author: Thomas C. Sideris

Publisher: Springer Science & Business Media

ISBN: 9462390215

Category: Mathematics

Page: 225

View: 2432

This book is a mathematically rigorous introduction to the beautiful subject of ordinary differential equations for beginning graduate or advanced undergraduate students. Students should have a solid background in analysis and linear algebra. The presentation emphasizes commonly used techniques without necessarily striving for completeness or for the treatment of a large number of topics. The first half of the book is devoted to the development of the basic theory: linear systems, existence and uniqueness of solutions to the initial value problem, flows, stability, and smooth dependence of solutions upon initial conditions and parameters. Much of this theory also serves as the paradigm for evolutionary partial differential equations. The second half of the book is devoted to geometric theory: topological conjugacy, invariant manifolds, existence and stability of periodic solutions, bifurcations, normal forms, and the existence of transverse homoclinic points and their link to chaotic dynamics. A common thread throughout the second part is the use of the implicit function theorem in Banach space. Chapter 5, devoted to this topic, the serves as the bridge between the two halves of the book.

## Differential Equations and Dynamical Systems

Author: Lawrence Perko

Publisher: Springer Science & Business Media

ISBN: 1461300037

Category: Mathematics

Page: 557

View: 4918

This textbook presents a systematic study of the qualitative and geometric theory of nonlinear differential equations and dynamical systems. Although the main topic of the book is the local and global behavior of nonlinear systems and their bifurcations, a thorough treatment of linear systems is given at the beginning of the text. All the material necessary for a clear understanding of the qualitative behavior of dynamical systems is contained in this textbook, including an outline of the proof and examples illustrating the proof of the Hartman-Grobman theorem. In addition to minor corrections and updates throughout, this new edition includes materials on higher order Melnikov theory and the bifurcation of limit cycles for planar systems of differential equations.

## Differential Equations: A Dynamical Systems Approach

Ordinary Differential Equations

Author: John H. Hubbard,Beverly H. West

Publisher: Springer Science & Business Media

ISBN: 9780387972862

Category: Mathematics

Page: 350

View: 5326

This corrected third printing retains the authors'main emphasis on ordinary differential equations. It is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. The authors have taken the view that a differential equations theory defines functions; the object of the theory is to understand the behaviour of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods, and the companion software, MacMath, is designed to bring these notions to life.

## Differential Equations: A Dynamical Systems Approach

Ordinary Differential Equations

Author: John H. Hubbard,Beverly H. West

Publisher: Springer

ISBN: 9781461209386

Category: Mathematics

Page: 350

View: 4059

This corrected third printing retains the authors'main emphasis on ordinary differential equations. It is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. The authors have taken the view that a differential equations theory defines functions; the object of the theory is to understand the behaviour of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods, and the companion software, MacMath, is designed to bring these notions to life.

## Nonlinear Differential Equations and Dynamical Systems

Author: Ferdinand Verhulst

Publisher: Springer Science & Business Media

ISBN: 3642614531

Category: Mathematics

Page: 306

View: 3955

For lecture courses that cover the classical theory of nonlinear differential equations associated with Poincare and Lyapunov and introduce the student to the ideas of bifurcation theory and chaos, this text is ideal. Its excellent pedagogical style typically consists of an insightful overview followed by theorems, illustrative examples, and exercises.

## Ordinary Differential Equations

From Calculus to Dynamical Systems

Author: Virginia W. Noonburg

Publisher: The Mathematical Association of America

ISBN: 1939512042

Category: Mathematics

Page: 315

View: 8610

This book presents a modern treatment of material traditionally covered in the sophomore-level course in ordinary differential equations. While this course is usually required for engineering students the material is attractive to students in any field of applied science, including those in the biological sciences. The standard analytic methods for solving first and second-order differential equations are covered in the first three chapters. Numerical and graphical methods are considered, side-by-side with the analytic methods, and are then used throughout the text. An early emphasis on the graphical treatment of autonomous first-order equations leads easily into a discussion of bifurcation of solutions with respect to parameters. The fourth chapter begins the study of linear systems of first-order equations and includes a section containing all of the material on matrix algebra needed in the remainder of the text. Building on the linear analysis, the fifth chapter brings the student to a level where two-dimensional nonlinear systems can be analyzed graphically via the phase plane. The study of bifurcations is extended to systems of equations, using several compelling examples, many of which are drawn from population biology. In this chapter the student is gently introduced to some of the more important results in the theory of dynamical systems. A student project, involving a problem recently appearing in the mathematical literature on dynamical systems, is included at the end of Chapter 5. A full treatment of the Laplace transform is given in Chapter 6, with several of the examples taken from the biological sciences. An appendix contains completely worked-out solutions to all of the odd-numbered exercises. The book is aimed at students with a good calculus background that want to learn more about how calculus is used to solve real problems in today's world. It can be used as a text for the introductory differential equations course, and is readable enough to be used even if the class is being "flipped." The book is also accessible as a self-study text for anyone who has completed two terms of calculus, including highly motivated high school students. Graduate students preparing to take courses in dynamical systems theory will also find this text useful.

## Differential Equations

A Dynamical Systems Approach

Author: John H. Hubbard,Beverly Henderson West

Publisher: N.A

ISBN: N.A

Category: Differential equations

Page: 350

View: 8988

## Differential Equations, Dynamical Systems, and Linear Algebra

Author: Morris W. Hirsch,Robert L. Devaney,Stephen Smale

ISBN: 0080873766

Category: Mathematics

Page: 358

View: 589

This book is about dynamical aspects of ordinary differential equations and the relations between dynamical systems and certain fields outside pure mathematics. A prominent role is played by the structure theory of linear operators on finite-dimensional vector spaces; the authors have included a self-contained treatment of that subject.

## Differential Dynamical Systems, Revised Edition

Author: James D. Meiss

Publisher: SIAM

ISBN: 161197464X

Category: Mathematics

Page: 392

View: 6277

Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics.÷ Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple?, Mathematica?, and MATLAB? software to give students practice with computation applied to dynamical systems problems.

## Global Bifurcations and Chaos

Analytical Methods

Author: Stephen Wiggins

Publisher: Springer Science & Business Media

ISBN: 1461210429

Category: Mathematics

Page: 495

View: 3227

Global Bifurcations and Chaos: Analytical Methods is unique in the literature of chaos in that it not only defines the concept of chaos in deterministic systems, but it describes the mechanisms which give rise to chaos (i.e., homoclinic and heteroclinic motions) and derives explicit techniques whereby these mechanisms can be detected in specific systems. These techniques can be viewed as generalizations of Melnikov's method to multi-degree of freedom systems subject to slowly varying parameters and quasiperiodic excitations. A unique feature of the book is that each theorem is illustrated with drawings that enable the reader to build visual pictures of global dynamcis of the systems being described. This approach leads to an enhanced intuitive understanding of the theory.

## Ordinary Differential Equations

Qualitative Theory

Author: Luis Barreira,Claudia Valls

Publisher: American Mathematical Soc.

ISBN: 0821887491

Category: Mathematics

Page: 248

View: 8849

This textbook provides a comprehensive introduction to the qualitative theory of ordinary differential equations. It includes a discussion of the existence and uniqueness of solutions, phase portraits, linear equations, stability theory, hyperbolicity and equations in the plane. The emphasis is primarily on results and methods that allow one to analyze qualitative properties of the solutions without solving the equations explicitly. The text includes numerous examples that illustrate in detail the new concepts and results as well as exercises at the end of each chapter. The book is also intended to serve as a bridge to important topics that are often left out of a course on ordinary differential equations. In particular, it provides brief introductions to bifurcation theory, center manifolds, normal forms and Hamiltonian systems.

## Differential Equations, Dynamical Systems, and an Introduction to Chaos

Author: Morris W. Hirsch,Stephen Smale,Robert L. Devaney

ISBN: 0123820103

Category: Mathematics

Page: 418

View: 5892

Hirsch, Devaney, and Smale's classic Differential Equations, Dynamical Systems, and an Introduction to Chaos has been used by professors as the primary text for undergraduate and graduate level courses covering differential equations. It provides a theoretical approach to dynamical systems and chaos written for a diverse student population among the fields of mathematics, science, and engineering. Prominent experts provide everything students need to know about dynamical systems as students seek to develop sufficient mathematical skills to analyze the types of differential equations that arise in their area of study. The authors provide rigorous exercises and examples clearly and easily by slowly introducing linear systems of differential equations. Calculus is required as specialized advanced topics not usually found in elementary differential equations courses are included, such as exploring the world of discrete dynamical systems and describing chaotic systems. Classic text by three of the world's most prominent mathematicians Continues the tradition of expository excellence Contains updated material and expanded applications for use in applied studies

## Ordinary Differential Equations with Applications

Author: Carmen Chicone

Publisher: Springer Science & Business Media

ISBN: 0387307699

Category: Mathematics

Page: 636

View: 4891

Based on a one-year course taught by the author to graduates at the University of Missouri, this book provides a student-friendly account of some of the standard topics encountered in an introductory course of ordinary differential equations. In a second semester, these ideas can be expanded by introducing more advanced concepts and applications. A central theme in the book is the use of Implicit Function Theorem, while the latter sections of the book introduce the basic ideas of perturbation theory as applications of this Theorem. The book also contains material differing from standard treatments, for example, the Fiber Contraction Principle is used to prove the smoothness of functions that are obtained as fixed points of contractions. The ideas introduced in this section can be extended to infinite dimensions.

## Nonlinear Ordinary Differential Equations

An Introduction for Scientists and Engineers

Author: Dominic Jordan,Peter Smith

Publisher: Oxford University Press on Demand

ISBN: 0199208247

Category: Mathematics

Page: 531

View: 7298

Thoroughly updated and expanded 4th edition of the classic text, including numerous worked examples, diagrams and exercises. An ideal resource for students and lecturers in engineering, mathematics and the sciences it is published alongside a separate Problems and Solutions Sourcebook containing over 500 problems and fully-worked solutions.

## Dynamical Systems

Differential Equations, Maps, and Chaotic Behaviour

Author: D. Arrowsmith,C.M. Place

Publisher: CRC Press

ISBN: 9780412390807

Category: Mathematics

Page: 330

View: 5437

This text discusses the qualitative properties of dynamical systems including both differential equations and maps. The approach taken relies heavily on examples (supported by extensive exercises, hints to solutions and diagrams) to develop the material, including a treatment of chaotic behavior. The unprecedented popular interest shown in recent years in the chaotic behavior of discrete dynamic systems including such topics as chaos and fractals has had its impact on the undergraduate and graduate curriculum. However there has, until now, been no text which sets out this developing area of mathematics within the context of standard teaching of ordinary differential equations. Applications in physics, engineering, and geology are considered and introductions to fractal imaging and cellular automata are given.

## Ordinary Differential Equations

Author: Jack K. Hale

Publisher: Courier Corporation

ISBN: 0486472116

Category: Mathematics

Page: 361

View: 9624

This rigorous treatment prepares readers for the study of differential equations and shows them how to research current literature. It emphasizes nonlinear problems and specific analytical methods. 1969 edition.

## Introduction to Differential Equations with Dynamical Systems

Author: Stephen L. Campbell,Richard Haberman

Publisher: Princeton University Press

ISBN: 1400841321

Category: Mathematics

Page: 472

View: 3161

Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Campbell and Richard Haberman--using carefully worded derivations, elementary explanations, and examples, exercises, and figures rather than theorems and proofs--have written a book that makes learning and teaching differential equations easier and more relevant. The book also presents elementary dynamical systems in a unique and flexible way that is suitable for all courses, regardless of length.

## Ordinary Differential Equations with Applications

Second Edition

Author: Sze-Bi Hsu

Publisher: World Scientific Publishing Company

ISBN: 9814452920

Category: Mathematics

Page: 312

View: 8844

During the past three decades, the development of nonlinear analysis, dynamical systems and their applications to science and engineering has stimulated renewed enthusiasm for the theory of Ordinary Differential Equations (ODE). This useful book, which is based on the lecture notes of a well-received graduate course, emphasizes both theory and applications, taking numerous examples from physics and biology to illustrate the application of ODE theory and techniques. Written in a straightforward and easily accessible style, this volume presents dynamical systems in the spirit of nonlinear analysis to readers at a graduate level and serves both as a textbook and as a valuable resource for researchers. This new edition contains corrections and suggestions from the various readers and users. A new chapter on Monotone Dynamical Systems is added to take into account the new developments in ordinary differential equations and dynamical systems.

## Approaches to the Qualitative Theory of Ordinary Differential Equations

Dynamical Systems and Nonlinear Oscillations

Author: Tong-Ren Ding

Publisher: World Scientific

ISBN: 981270468X

Category: Mathematics

Page: 383

View: 1256

This book is an ideal text for advanced undergraduate students and graduate students with an interest in the qualitative theory of ordinary differential equations and dynamical systems. Elementary knowledge is emphasized by the detailed discussions on the fundamental theorems of the Cauchy problem, fixed-point theorems (especially the twist theorems), the principal idea of dynamical systems, the nonlinear oscillation of Duffing's equation, and some special analyses of particular differential equations. It also contains the latest research by the author as an integral part of the book.