Numbers, Sequences and Series

Author: Keith E. Hirst

Publisher: Butterworth-Heinemann

ISBN: 0340610433

Category: Mathematics

Page: 198

View: 3028

Concerned with the logical foundations of number systems from integers to complex numbers.

Problems in Mathematical Analysis: Real numbers, sequences, and series

Author: Wiesława J. Kaczor,Maria T. Nowak

Publisher: American Mathematical Soc.

ISBN: 0821820508

Category: Mathematics

Page: 380

View: 4774

We learn by doing. We learn mathematics by doing problems. This book is the first volume of a series of books of problems in mathematical analysis. It is mainly intended for students studying the basic principles of analysis. However, given its organization, level, and selection of problems, it would also be an ideal choice for tutorial or problem-solving seminars, particularly those geared toward the Putnam exam. The volume is also suitable for self-study. Each section of the book begins with relatively simple exercises, yet may also contain quite challenging problems. Very often several consecutive exercises are concerned with different aspects of one mathematical problem or theorem.This presentation of material is designed to help student comprehension and to encourage them to ask their own questions and to start research. The collection of problems in the book is also intended to help teachers who wish to incorporate the problems into lectures. Solutions for all the problems are provided. The book covers three topics: real numbers, sequences, and series, and is divided into two parts: exercises and/or problems, and solutions. Specific topics covered in this volume include the following: basic properties of real numbers, continued fractions, monotonic sequences, limits of sequences, Stolz's theorem, summation of series, tests for convergence, double series, arrangement of series, Cauchy product, and infinite products. Also available from the AMS are ""Problems in Mathematical Analysis II"" and ""Problems in Analysis III"" in the ""Student Mathematical Library"" series.

Numbers, Sequences and Series

Author: Keith Hirst

Publisher: Elsevier

ISBN: 0080928587

Category: Mathematics

Page: 208

View: 6119

Number and geometry are the foundations upon which mathematics has been built over some 3000 years. This book is concerned with the logical foundations of number systems from integers to complex numbers. The author has chosen to develop the ideas by illustrating the techniques used throughout mathematics rather than using a self-contained logical treatise. The idea of proof has been emphasised, as has the illustration of concepts from a graphical, numerical and algebraic point of view. Having laid the foundations of the number system, the author has then turned to the analysis of infinite processes involving sequences and series of numbers, including power series. The book also has worked examples throughout and includes some suggestions for self-study projects. In addition there are tutorial problems aimed at stimulating group work and discussion.

Problems in Mathematical Analysis: Real numbers, sequences, and series

Author: Wiesława J. Kaczor,Maria T. Nowak

Publisher: American Mathematical Soc.

ISBN: 0821820508

Category: Mathematics

Page: 380

View: 893

We learn by doing. We learn mathematics by doing problems. This book is the first volume of a series of books of problems in mathematical analysis. It is mainly intended for students studying the basic principles of analysis. However, given its organization, level, and selection of problems, it would also be an ideal choice for tutorial or problem-solving seminars, particularly those geared toward the Putnam exam. The volume is also suitable for self-study. Each section of the book begins with relatively simple exercises, yet may also contain quite challenging problems. Very often several consecutive exercises are concerned with different aspects of one mathematical problem or theorem.This presentation of material is designed to help student comprehension and to encourage them to ask their own questions and to start research. The collection of problems in the book is also intended to help teachers who wish to incorporate the problems into lectures. Solutions for all the problems are provided. The book covers three topics: real numbers, sequences, and series, and is divided into two parts: exercises and/or problems, and solutions. Specific topics covered in this volume include the following: basic properties of real numbers, continued fractions, monotonic sequences, limits of sequences, Stolz's theorem, summation of series, tests for convergence, double series, arrangement of series, Cauchy product, and infinite products. Also available from the AMS are ""Problems in Mathematical Analysis II"" and ""Problems in Analysis III"" in the ""Student Mathematical Library"" series.

Problems in Mathematical Analysis: Real numbers, sequences, and series

Author: Wiesława J. Kaczor,Maria T. Nowak

Publisher: American Mathematical Soc.

ISBN: 0821820508

Category: Mathematics

Page: 380

View: 8506

We learn by doing. We learn mathematics by doing problems. This book is the first volume of a series of books of problems in mathematical analysis. It is mainly intended for students studying the basic principles of analysis. However, given its organization, level, and selection of problems, it would also be an ideal choice for tutorial or problem-solving seminars, particularly those geared toward the Putnam exam. The volume is also suitable for self-study. Each section of the book begins with relatively simple exercises, yet may also contain quite challenging problems. Very often several consecutive exercises are concerned with different aspects of one mathematical problem or theorem.This presentation of material is designed to help student comprehension and to encourage them to ask their own questions and to start research. The collection of problems in the book is also intended to help teachers who wish to incorporate the problems into lectures. Solutions for all the problems are provided. The book covers three topics: real numbers, sequences, and series, and is divided into two parts: exercises and/or problems, and solutions. Specific topics covered in this volume include the following: basic properties of real numbers, continued fractions, monotonic sequences, limits of sequences, Stolz's theorem, summation of series, tests for convergence, double series, arrangement of series, Cauchy product, and infinite products. Also available from the AMS are ""Problems in Mathematical Analysis II"" and ""Problems in Analysis III"" in the ""Student Mathematical Library"" series.

Infinite Sequences and Series

Author: Konrad Knopp

Publisher: Courier Corporation

ISBN: 0486152049

Category: Mathematics

Page: 208

View: 5441

Careful presentation of fundamentals of the theory by one of the finest modern expositors of higher mathematics. Covers functions of real and complex variables, arbitrary and null sequences, convergence and divergence, Cauchy's limit theorem, more.

Methods of Solving Sequence and Series Problems

Author: Ellina Grigorieva

Publisher: Birkhäuser

ISBN: 3319456865

Category: Mathematics

Page: 281

View: 9989

This book aims to dispel the mystery and fear experienced by students surrounding sequences, series, convergence, and their applications. The author, an accomplished female mathematician, achieves this by taking a problem solving approach, starting with fascinating problems and solving them step by step with clear explanations and illuminating diagrams. The reader will find the problems interesting, unusual, and fun, yet solved with the rigor expected in a competition. Some problems are taken directly from mathematics competitions, with the name and year of the exam provided for reference. Proof techniques are emphasized, with a variety of methods presented. The text aims to expand the mind of the reader by often presenting multiple ways to attack the same problem, as well as drawing connections with different fields of mathematics. Intuitive and visual arguments are presented alongside technical proofs to provide a well-rounded methodology. With nearly 300 problems including hints, answers, and solutions, Methods of Solving Sequences and Series Problems is an ideal resource for those learning calculus, preparing for mathematics competitions, or just looking for a worthwhile challenge. It can also be used by faculty who are looking for interesting and insightful problems that are not commonly found in other textbooks.

Theory and Application of Infinite Series

Author: Konrad Knopp

Publisher: Courier Corporation

ISBN: 0486318613

Category: Mathematics

Page: 592

View: 9659

Unusually clear and interesting classic covers real numbers and sequences, foundations of the theory of infinite series and development of the theory (series of valuable terms, Euler's summation formula, asymptotic expansions, other topics). Includes exercises.

Real Analysis via Sequences and Series

Author: Charles H.C. Little,Kee L. Teo,Bruce van Brunt

Publisher: Springer

ISBN: 1493926519

Category: Mathematics

Page: 476

View: 8066

This text gives a rigorous treatment of the foundations of calculus. In contrast to more traditional approaches, infinite sequences and series are placed at the forefront. The approach taken has not only the merit of simplicity, but students are well placed to understand and appreciate more sophisticated concepts in advanced mathematics. The authors mitigate potential difficulties in mastering the material by motivating definitions, results and proofs. Simple examples are provided to illustrate new material and exercises are included at the end of most sections. Noteworthy topics include: an extensive discussion of convergence tests for infinite series, Wallis’s formula and Stirling’s formula, proofs of the irrationality of π and e and a treatment of Newton’s method as a special instance of finding fixed points of iterated functions.

An Introduction to Real Analysis

The Commonwealth and International Library: Mathematical Topics

Author: Derek G. Ball

Publisher: Elsevier

ISBN: 1483158969

Category: Mathematics

Page: 324

View: 8388

An Introduction to Real Analysis presents the concepts of real analysis and highlights the problems which necessitate the introduction of these concepts. Topics range from sets, relations, and functions to numbers, sequences, series, derivatives, and the Riemann integral. This volume begins with an introduction to some of the problems which are met in the use of numbers for measuring, and which provide motivation for the creation of real analysis. Attention then turns to real numbers that are built up from natural numbers, with emphasis on integers, rationals, and irrationals. The chapters that follow explore the conditions under which sequences have limits and derive the limits of many important sequences, along with functions of a real variable, Rolle's theorem and the nature of the derivative, and the theory of infinite series and how the concepts may be applied to decimal representation. The book also discusses some important functions and expansions before concluding with a chapter on the Riemann integral and the problem of area and its measurement. Throughout the text the stress has been upon concepts and interesting results rather than upon techniques. Each chapter contains exercises meant to facilitate understanding of the subject matter. This book is intended for students in colleges of education and others with similar needs.

Uniform Distribution of Sequences

Author: L. Kuipers,H. Niederreiter

Publisher: Courier Corporation

ISBN: 0486149994

Category: Mathematics

Page: 416

View: 3888

The theory of uniform distribution began with Weyl's celebrated paper of 1916 and this book summarizes its development through the mid-1970s, with comprehensive coverage of methods and principles. 1974 edition.

Sequences, Groups, and Number Theory

Author: Valérie Berthé,Michel Rigo

Publisher: Birkhäuser

ISBN: 331969152X

Category: Mathematics

Page: 578

View: 6651

This collaborative book presents recent trends on the study of sequences, including combinatorics on words and symbolic dynamics, and new interdisciplinary links to group theory and number theory. Other chapters branch out from those areas into subfields of theoretical computer science, such as complexity theory and theory of automata. The book is built around four general themes: number theory and sequences, word combinatorics, normal numbers, and group theory. Those topics are rounded out by investigations into automatic and regular sequences, tilings and theory of computation, discrete dynamical systems, ergodic theory, numeration systems, automaton semigroups, and amenable groups. This volume is intended for use by graduate students or research mathematicians, as well as computer scientists who are working in automata theory and formal language theory. With its organization around unified themes, it would also be appropriate as a supplemental text for graduate level courses.

Fibonacci’s Liber Abaci

A Translation into Modern English of Leonardo Pisano’s Book of Calculation

Author: Laurence Sigler

Publisher: Springer Science & Business Media

ISBN: 1461300797

Category: Mathematics

Page: 638

View: 6808

First published in 1202, Fibonacci’s Liber Abaci was one of the most important books on mathematics in the Middle Ages, introducing Arabic numerals and methods throughout Europe. This is the first translation into a modern European language, of interest not only to historians of science but also to all mathematicians and mathematics teachers interested in the origins of their methods.

Elements of Real Analysis

Author: David A. Sprecher

Publisher: Courier Corporation

ISBN: 0486153258

Category: Mathematics

Page: 368

View: 7255

Classic text explores intermediate steps between basics of calculus and ultimate stage of mathematics — abstraction and generalization. Covers fundamental concepts, real number system, point sets, functions of a real variable, Fourier series, more. Over 500 exercises.

Problems in Mathematical Analysis: Continuity and differentiation

Author: Wiesława J. Kaczor,Maria T. Nowak

Publisher: American Mathematical Soc.

ISBN: 0821820516

Category: Mathematics

Page: 398

View: 5059

We learn by doing. We learn mathematics by doing problems. And we learn more mathematics by doing more problems. This is the sequel to Problems in Mathematical Analysis I (Volume 4 in the Student Mathematical Library series). If you want to hone your understanding of continuous and differentiable functions, this book contains hundreds of problems to help you do so. The emphasis here is on real functions of a single variable. The book is mainly geared toward students studying the basic principles of analysis. However, given its selection of problems, organization, and level, it would be an ideal choice for tutorial or problem-solving seminars, particularly those geared toward the Putnam exam. It is also suitable for self-study. The presentation of the material is designed to help student comprehension, to encourage them to ask their own questions, and to start research. The collection of problems will also help teachers who wish to incorporate problems into their lectures. The problems are grouped into sections according to the methods of solution. Solutions for the problems are provided.

A Handbook of Integer Sequences

Author: N.J.A. Sloane

Publisher: Academic Press

ISBN: 148326467X

Category: Mathematics

Page: 220

View: 695

A Handbook of Integer Sequences contains a main table of 2300 sequences of integers that are collected from all branches of mathematics and science. This handbook describes how to use the main table and provides methods for analyzing and describing unknown and important sequences. This compilation also serves as an index to the literature for locating references on a particular problem and quickly finds numbers such as 712, number of partitions of 30, 18th Catalan number, or expansion of ? to 60 decimal places. Other topics include the method of differences, self-generating sequences, polyominoes, permutations, and puzzle sequences. This publication is a good source for students and researchers who are confronted with strange and important sequences.

Elementary Analysis

The Theory of Calculus

Author: Kenneth A. Ross

Publisher: Springer Science & Business Media

ISBN: 1461462711

Category: Mathematics

Page: 412

View: 6864

For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging. The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.

The Square Root of 2

A Dialogue Concerning a Number and a Sequence

Author: David Flannery

Publisher: Springer Science & Business Media

ISBN: 0387314342

Category: Science

Page: 260

View: 6186

An elegantly dramatized and illustrated dialog on the square root of two and the whole concept of irrational numbers.