**Author**: Reg Allenby

**Publisher:** Elsevier

**ISBN:** 0080928773

**Category:** Mathematics

**Page:** 288

**View:** 6134

'Numbers and Proofs' presents a gentle introduction to the notion of proof to give the reader an understanding of how to decipher others' proofs as well as construct their own. Useful methods of proof are illustrated in the context of studying problems concerning mainly numbers (real, rational, complex and integers). An indispensable guide to all students of mathematics. Each proof is preceded by a discussion which is intended to show the reader the kind of thoughts they might have before any attempt proof is made. Established proofs which the student is in a better position to follow then follow. Presented in the author's entertaining and informal style, and written to reflect the changing profile of students entering universities, this book will prove essential reading for all seeking an introduction to the notion of proof as well as giving a definitive guide to the more common forms. Stressing the importance of backing up "truths" found through experimentation, with logically sound and watertight arguments, it provides an ideal bridge to more complex undergraduate maths.

Focusing on an approach of solving rigorous problems and learning how to prove, this volume is concentrated on two specific content themes, elementary number theory and algebraic polynomials. The benefit to readers who are moving from calculus to more abstract mathematics is to acquire the ability to understand proofs through use of the book and the multitude of proofs and problems that will be covered throughout. This book is meant to be a transitional precursor to more complex topics in analysis, advanced number theory, and abstract algebra. To achieve the goal of conceptual understanding, a large number of problems and examples will be interspersed through every chapter. The problems are always presented in a multi-step and often very challenging, requiring the reader to think about proofs, counter-examples, and conjectures. Beyond the undergraduate mathematics student audience, the text can also offer a rigorous treatment of mathematics content (numbers and algebra) for high-achieving high school students. Furthermore, prospective teachers will add to the breadth of the audience as math education majors, will understand more thoroughly methods of proof, and will add to the depth of their mathematical knowledge. In the past, PNA has been taught in a "problem solving in middle school” course (twice), to a quite advanced high school students course (three semesters), and three times as a secondary resource for a course for future high school teachers. PNA is suitable for secondary math teachers who look for material to encourage and motivate more high achieving students.

A gentle introduction to the highly sophisticated world of discrete mathematics, Mathematical Problems and Proofs presents topics ranging from elementary definitions and theorems to advanced topics -- such as cardinal numbers, generating functions, properties of Fibonacci numbers, and Euclidean algorithm. This excellent primer illustrates more than 150 solutions and proofs, thoroughly explained in clear language. The generous historical references and anecdotes interspersed throughout the text create interesting intermissions that will fuel readers' eagerness to inquire further about the topics and some of our greatest mathematicians. The author guides readers through the process of solving enigmatic proofs and problems, and assists them in making the transition from problem solving to theorem proving. At once a requisite text and an enjoyable read, Mathematical Problems and Proofs is an excellent entrée to discrete mathematics for advanced students interested in mathematics, engineering, and science.

Facts101 is your complete guide to Fundamentals of Mathematics, An Introduction to Proofs, Logic, Sets, and Numbers. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.

“Proofs and Fundamentals: A First Course in Abstract Mathematics” 2nd edition is designed as a "transition" course to introduce undergraduates to the writing of rigorous mathematical proofs, and to such fundamental mathematical ideas as sets, functions, relations, and cardinality. The text serves as a bridge between computational courses such as calculus, and more theoretical, proofs-oriented courses such as linear algebra, abstract algebra and real analysis. This 3-part work carefully balances Proofs, Fundamentals, and Extras. Part 1 presents logic and basic proof techniques; Part 2 thoroughly covers fundamental material such as sets, functions and relations; and Part 3 introduces a variety of extra topics such as groups, combinatorics and sequences. A gentle, friendly style is used, in which motivation and informal discussion play a key role, and yet high standards in rigor and in writing are never compromised. New to the second edition: 1) A new section about the foundations of set theory has been added at the end of the chapter about sets. This section includes a very informal discussion of the Zermelo– Fraenkel Axioms for set theory. We do not make use of these axioms subsequently in the text, but it is valuable for any mathematician to be aware that an axiomatic basis for set theory exists. Also included in this new section is a slightly expanded discussion of the Axiom of Choice, and new discussion of Zorn's Lemma, which is used later in the text. 2) The chapter about the cardinality of sets has been rearranged and expanded. There is a new section at the start of the chapter that summarizes various properties of the set of natural numbers; these properties play important roles subsequently in the chapter. The sections on induction and recursion have been slightly expanded, and have been relocated to an earlier place in the chapter (following the new section), both because they are more concrete than the material found in the other sections of the chapter, and because ideas from the sections on induction and recursion are used in the other sections. Next comes the section on the cardinality of sets (which was originally the first section of the chapter); this section gained proofs of the Schroeder–Bernstein theorem and the Trichotomy Law for Sets, and lost most of the material about finite and countable sets, which has now been moved to a new section devoted to those two types of sets. The chapter concludes with the section on the cardinality of the number systems. 3) The chapter on the construction of the natural numbers, integers and rational numbers from the Peano Postulates was removed entirely. That material was originally included to provide the needed background about the number systems, particularly for the discussion of the cardinality of sets, but it was always somewhat out of place given the level and scope of this text. The background material about the natural numbers needed for the cardinality of sets has now been summarized in a new section at the start of that chapter, making the chapter both self-contained and more accessible than it previously was. 4) The section on families of sets has been thoroughly revised, with the focus being on families of sets in general, not necessarily thought of as indexed. 5) A new section about the convergence of sequences has been added to the chapter on selected topics. This new section, which treats a topic from real analysis, adds some diversity to the chapter, which had hitherto contained selected topics of only an algebraic or combinatorial nature. 6) A new section called ``You Are the Professor'' has been added to the end of the last chapter. This new section, which includes a number of attempted proofs taken from actual homework exercises submitted by students, offers the reader the opportunity to solidify her facility for writing proofs by critiquing these submissions as if she were the instructor for the course. 7) All known errors have been corrected. 8) Many minor adjustments of wording have been made throughout the text, with the hope of improving the exposition.

This book introduces students to the process of doing mathematics and prepares them to succeed in higher-level mathematics courses. By discussing proof techniques, problem solving methods, and the understanding of mathematical ideas, the book provides a solid foundation for students majoring in mathematics, science, and engineering. Students will learn to grasp the underlying concepts of a subject and how to apply these concepts to solving problems. While being able to understand and reproduce proofs of theorems, they will also gain the ability to comprehend the connections among the important concepts and techniques of each subject. This book is intended for a shorter course on proofs and mathematical reasoning, and could also be used as a supplemental text in courses such as algebra, analysis, and linear algebra.

An accessible introduction to abstract mathematics with an emphasis on proof writing Addressing the importance of constructing and understanding mathematical proofs, Fundamentals of Mathematics: An Introduction to Proofs, Logic, Sets, and Numbers introduces key concepts from logic and set theory as well as the fundamental definitions of algebra to prepare readers for further study in the field of mathematics. The author supplies a seamless, hands-on presentation of number systems, utilizing key elements of logic and set theory and encouraging readers to abide by the fundamental rule that you are not allowed to use any results that you have not proved yet. The book begins with a focus on the elements of logic used in everyday mathematical language, exposing readers to standard proof methods and Russell's Paradox. Once this foundation is established, subsequent chapters explore more rigorous mathematical exposition that outlines the requisite elements of Zermelo-Fraenkel set theory and constructs the natural numbers and integers as well as rational, real, and complex numbers in a rigorous, yet accessible manner. Abstraction is introduced as a tool, and special focus is dedicated to concrete, accessible applications, such as public key encryption, that are made possible by abstract ideas. The book concludes with a self-contained proof of Abel's Theorem and an investigation of deeper set theory by introducing the Axiom of Choice, ordinal numbers, and cardinal numbers. Throughout each chapter, proofs are written in much detail with explicit indications that emphasize the main ideas and techniques of proof writing. Exercises at varied levels of mathematical development allow readers to test their understanding of the material, and a related Web site features video presentations for each topic, which can be used along with the book or independently for self-study. Classroom-tested to ensure a fluid and accessible presentation, Fundamentals of Mathematics is an excellent book for mathematics courses on proofs, logic, and set theory at the upper-undergraduate level as well as a supplement for transition courses that prepare students for the rigorous mathematical reasoning of advanced calculus, real analysis, and modern algebra. The book is also a suitable reference for professionals in all areas of mathematics education who are interested in mathematical proofs and the foundation upon which all mathematics is built.

As a student moves from basic calculus courses into upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, and so on, a "bridge" course can help ensure a smooth transition. Introduction to Mathematical Structures and Proofs is a textbook intended for such a course, or for self-study. This book introduces an array of fundamental mathematical structures. It also explores the delicate balance of intuition and rigor—and the flexible thinking—required to prove a nontrivial result. In short, this book seeks to enhance the mathematical maturity of the reader. The new material in this second edition includes a section on graph theory, several new sections on number theory (including primitive roots, with an application to card-shuffling), and a brief introduction to the complex numbers (including a section on the arithmetic of the Gaussian integers). Solutions for even numbered exercises are available on springer.com for instructors adopting the text for a course.

Diese fünfte deutsche Auflage enthält ein ganz neues Kapitel über van der Waerdens Permanenten-Vermutung, sowie weitere neue, originelle und elegante Beweise in anderen Kapiteln. Aus den Rezensionen: “... es ist fast unmöglich, ein Mathematikbuch zu schreiben, das von jedermann gelesen und genossen werden kann, aber Aigner und Ziegler gelingt diese Meisterleistung in virtuosem Stil. [...] Dieses Buch erweist der Mathematik einen unschätzbaren Dienst, indem es Nicht-Mathematikern vorführt, was Mathematiker meinen, wenn sie über Schönheit sprechen.” Aus der Laudatio für den “Steele Prize for Mathematical Exposition” 2018 "Was hier vorliegt ist eine Sammlung von Beweisen, die in das von Paul Erdös immer wieder zitierte BUCH gehören, das vom lieben (?) Gott verwahrt wird und das die perfekten Beweise aller mathematischen Sätze enthält. Manchmal lässt der Herrgott auch einige von uns Sterblichen in das BUCH blicken, und die so resultierenden Geistesblitze erhellen den Mathematikeralltag mit eleganten Argumenten, überraschenden Zusammenhängen und unerwarteten Volten." www.mathematik.de, Mai 2002 "Eine einzigartige Sammlung eleganter mathematischer Beweise nach der Idee von Paul Erdös, verständlich geschrieben von exzellenten Mathematikern. Dieses Buch gibt anregende Lösungen mit Aha-Effekt, auch für Nicht-Mathematiker." www.vismath.de "Ein prächtiges, äußerst sorgfältig und liebevoll gestaltetes Buch! Erdös hatte die Idee DES BUCHES, in dem Gott die perfekten Beweise mathematischer Sätze eingeschrieben hat. Das hier gedruckte Buch will eine "very modest approximation" an dieses BUCH sein.... Das Buch von Aigner und Ziegler ist gelungen ..." Mathematische Semesterberichte, November 1999 "Wer (wie ich) bislang vergeblich versucht hat, einen Blick ins BUCH zu werfen, wird begierig in Aigners und Zieglers BUCH der Beweise schmökern." www.mathematik.de, Mai 2002

This book constitutes the refereed proceedings of the Second International Conference on Certified Programs and Proofs, CPP 2012, held in Kyoto, Japan, in December 2012. The 18 revised regular papers presented were carefully reviewed and selected from 37 submissions. They deal with those topics in computer science and mathematics in which certification via formal techniques is crucial.

The transition from school mathematics to university mathematics is seldom straightforward. Students are faced with a disconnect between the algorithmic and informal attitude to mathematics at school, versus a new emphasis on proof, based on logic, and a more abstract development of general concepts, based on set theory. The authors have many years' experience of the potential difficulties involved, through teaching first-year undergraduates and researching the ways in which students and mathematicians think. The book explains the motivation behind abstract foundational material based on students' experiences of school mathematics, and explicitly suggests ways students can make sense of formal ideas. This second edition takes a significant step forward by not only making the transition from intuitive to formal methods, but also by reversing the process- using structure theorems to prove that formal systems have visual and symbolic interpretations that enhance mathematical thinking. This is exemplified by a new chapter on the theory of groups. While the first edition extended counting to infinite cardinal numbers, the second also extends the real numbers rigorously to larger ordered fields. This links intuitive ideas in calculus to the formal epsilon-delta methods of analysis. The approach here is not the conventional one of 'nonstandard analysis', but a simpler, graphically based treatment which makes the notion of an infinitesimal natural and straightforward. This allows a further vision of the wider world of mathematical thinking in which formal definitions and proof lead to amazing new ways of defining, proving, visualising and symbolising mathematics beyond previous expectations.

This self-contained introduction to classical number theory is written for undergraduate and graduate students, alike. Proofs of the theorems and solutions of the exercises are presented step-by-step.

The Nuts and Bolts of Proofs: An Introduction to Mathematical Proofs provides basic logic of mathematical proofs and shows how mathematical proofs work. It offers techniques for both reading and writing proofs. The second chapter of the book discusses the techniques in proving if/then statements by contrapositive and proofing by contradiction. It also includes the negation statement, and/or. It examines various theorems, such as the if and only-if, or equivalence theorems, the existence theorems, and the uniqueness theorems. In addition, use of counter examples, mathematical induction, composite statements including multiple hypothesis and multiple conclusions, and equality of numbers are covered in this chapter. The book also provides mathematical topics for practicing proof techniques. Included here are the Cartesian products, indexed families, functions, and relations. The last chapter of the book provides review exercises on various topics. Undergraduate students in engineering and physical science will find this book invaluable. Jumps right in with the needed vocabulary—gets students thinking like mathematicians from the beginning Offers a large variety of examples and problems with solutions for students to work through on their own Includes a collection of exercises without solutions to help instructors prepare assignments Contains an extensive list of basic mathematical definitions and concepts needed in abstract mathematics

What is the number one? How can we be sure that 2+2=4? These apparently ssimple questions have perplexed philosophers for thousands of years, but discussion of them was transformed by the German philosopher Gottlob Frege (1848-1925). Frege (pronounced Fray-guh)believed that arithmetic and all mathematics are derived from logic, and to prove this he developed a completely new approach to logic and numbers. Joan Weiner presents a very clear outline of Frege's life and ideas, showing how his thinking evolved through successive books and articles.

A hands-on introduction to the tools needed for rigorous and theoretical mathematical reasoning Successfully addressing the frustration many students experience as they make the transition from computational mathematics to advanced calculus and algebraic structures, Theorems, Corollaries, Lemmas, and Methods of Proof equips students with the tools needed to succeed while providing a firm foundation in the axiomatic structure of modern mathematics. This essential book: * Clearly explains the relationship between definitions, conjectures, theorems, corollaries, lemmas, and proofs * Reinforces the foundations of calculus and algebra * Explores how to use both a direct and indirect proof to prove a theorem * Presents the basic properties of real numbers * Discusses how to use mathematical induction to prove a theorem * Identifies the different types of theorems * Explains how to write a clear and understandable proof * Covers the basic structure of modern mathematics and the key components of modern mathematics A complete chapter is dedicated to the different methods of proof such as forward direct proofs, proof by contrapositive, proof by contradiction, mathematical induction, and existence proofs. In addition, the author has supplied many clear and detailed algorithms that outline these proofs. Theorems, Corollaries, Lemmas, and Methods of Proof uniquely introduces scratch work as an indispensable part of the proof process, encouraging students to use scratch work and creative thinking as the first steps in their attempt to prove a theorem. Once their scratch work successfully demonstrates the truth of the theorem, the proof can be written in a clear and concise fashion. The basic structure of modern mathematics is discussed, and each of the key components of modern mathematics is defined. Numerous exercises are included in each chapter, covering a wide range of topics with varied levels of difficulty. Intended as a main text for mathematics courses such as Methods of Proof, Transitions to Advanced Mathematics, and Foundations of Mathematics, the book may also be used as a supplementary textbook in junior- and senior-level courses on advanced calculus, real analysis, and modern algebra.

From the reviews "This is a reprint of the original edition of Lang’s ‘A First Course in Calculus’, which was first published in 1964....The treatment is ‘as rigorous as any mathematician would wish it’....[The exercises] are refreshingly simply stated, without any extraneous verbiage, and at times quite challenging....There are answers to all the exercises set and some supplementary problems on each topic to tax even the most able." --Mathematical Gazette

The purpose of this book is to introduce the basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on helping the reader in understanding and constructing proofs and writing clear mathematics. This is achieved by exploring set theory, combinatorics and number theory, topics which include many fundamental ideas which are part of the tool kit of any mathematician. This material illustrates how familiar ideas can be formulated rigorously, provides examples demonstrating a wide range of basic methods of proof, and includes some of the classic proofs. The book presents mathematics as a continually developing subject. Material meeting the needs of readers from a wide range of backgrounds is included. Over 250 problems include questions to interest and challenge the most able student as well as plenty of routine exercises to help familiarize the reader with the basic ideas.

A thorough account of the philosophy of mathematics. In a cogent account the author argues against the view that mathematics is solely logic.

This rigorous, detailed introduction to real analysis presents the fundamentals clearly and includes definitions, theorems and proofs. Mirroring the structure of standard calculus courses makes it especially accessible to university students of mathematics.