Nonlinear Analysis, Function Spaces and Applications Vol. 4

Proceedings of the Spring School held in Roudnice nad Labem 1990

Author: Alois Kufner,Jiri Rakosnik,Miroslav Krbec,Bohumir Opic

Publisher: Vieweg+Teubner Verlag

ISBN: 9783322008251

Category: Technology & Engineering

Page: 257

View: 7328

Integral Operators in Non-Standard Function Spaces

Volume 2: Variable Exponent Hölder, Morrey–Campanato and Grand Spaces

Author: Vakhtang Kokilashvili,Alexander Meskhi,Humberto Rafeiro,Stefan Samko

Publisher: Birkhäuser

ISBN: 3319210181

Category: Mathematics

Page: 434

View: 3825

This book, the result of the authors’ long and fruitful collaboration, focuses on integral operators in new, non-standard function spaces and presents a systematic study of the boundedness and compactness properties of basic, harmonic analysis integral operators in the following function spaces, among others: variable exponent Lebesgue and amalgam spaces, variable Hölder spaces, variable exponent Campanato, Morrey and Herz spaces, Iwaniec-Sbordone (grand Lebesgue) spaces, grand variable exponent Lebesgue spaces unifying the two spaces mentioned above, grand Morrey spaces, generalized grand Morrey spaces, and weighted analogues of some of them. The results obtained are widely applied to non-linear PDEs, singular integrals and PDO theory. One of the book’s most distinctive features is that the majority of the statements proved here are in the form of criteria. The book is intended for a broad audience, ranging from researchers in the area to experts in applied mathematics and prospective students.

Handbook of Differential Equations: Evolutionary Equations

Author: C.M. Dafermos,Milan Pokorny

Publisher: Elsevier

ISBN: 9780080931975

Category: Mathematics

Page: 608

View: 9454

The material collected in this volume discusses the present as well as expected future directions of development of the field with particular emphasis on applications. The seven survey articles present different topics in Evolutionary PDE’s, written by leading experts. - Review of new results in the area - Continuation of previous volumes in the handbook series covering Evolutionary PDEs - Written by leading experts

Function Spaces and Partial Differential Equations

Author: Ali Taheri

Publisher: Oxford University Press, USA

ISBN: 0198733151

Category: Differential equations, Partial

Page: 480

View: 7241

This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour. The strength of the book primarily lies in its clear and detailed explanations, scope and coverage, highlighting and presenting deep and profound inter-connections between different related and seemingly unrelated disciplines within classical and modern mathematics and above all the extensive collection of examples, worked-out and hinted exercises. There are well over 700 exercises of varying level leading the reader from the basics to the most advanced levels and frontiers of research. The book can be used either for independent study or for a year-long graduate level course. In fact it has its origin in a year-long graduate course taught by the author in Oxford in 2004-5 and various parts of it in other institutions later on. A good number of distinguished researchers and faculty in mathematics worldwide have started their research career from the course that formed the basis for this book.

Function Spaces and Partial Differential Equations

Author: Ali Taheri

Publisher: Oxford University Press, USA

ISBN: 0198733135

Category: Differential equations, Partial

Page: 528

View: 3249

This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour. The strength of the book primarily lies in its clear and detailed explanations, scope and coverage, highlighting and presenting deep and profound inter-connections between different related and seemingly unrelated disciplines within classical and modern mathematics and above all the extensive collection of examples, worked-out and hinted exercises. There are well over 700 exercises of varying level leading the reader from the basics to the most advanced levels and frontiers of research. The book can be used either for independent study or for a year-long graduate level course. In fact it has its origin in a year-long graduate course taught by the author in Oxford in 2004-5 and various parts of it in other institutions later on. A good number of distinguished researchers and faculty in mathematics worldwide have started their research career from the course that formed the basis for this book.

Nonlinear Elliptic and Parabolic Problems

A Special Tribute to the Work of Herbert Amann

Author: Michel Chipot,Joachim Escher

Publisher: Springer Science & Business Media

ISBN: 3764373857

Category: Mathematics

Page: 536

View: 4673

The present volume is dedicated to celebrate the work of the renowned mathematician Herbert Amann, who had a significant and decisive influence in shaping Nonlinear Analysis. Most articles published in this book, which consists of 32 articles in total, written by highly distinguished researchers, are in one way or another related to the scientific works of Herbert Amann. The contributions cover a wide range of nonlinear elliptic and parabolic equations with applications to natural sciences and engineering. Special topics are fluid dynamics, reaction-diffusion systems, bifurcation theory, maximal regularity, evolution equations, and the theory of function spaces.

Operator Theory in Krein Spaces and Nonlinear Eigenvalue Problems

Author: Karl-Heinz Förster,Peter Jonas,Heinz Langer

Publisher: Springer Science & Business Media

ISBN: 3764374535

Category: Mathematics

Page: 308

View: 5485

This volume contains a collection of recent original research papers in operator theory in Krein spaces, on generalized Nevanlinna functions, which are closely connected with this theory, and on nonlinear eigenvalue problems. Key topics include: spectral theory for normal operators; perturbation theory for self-adjoint operators in Krein spaces; and, models for generalized Nevanlinna functions.

Applied Functional Analysis

Applications to Mathematical Physics

Author: Eberhard Zeidler

Publisher: Springer Science & Business Media

ISBN: 9780387944425

Category: Mathematics

Page: 481

View: 6379

The first part of a self-contained, elementary textbook, combining linear functional analysis, nonlinear functional analysis, numerical functional analysis, and their substantial applications with each other. As such, the book addresses undergraduate students and beginning graduate students of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems which relate to our real world. Applications concern ordinary and partial differential equations, the method of finite elements, integral equations, special functions, both the Schroedinger approach and the Feynman approach to quantum physics, and quantum statistics. As a prerequisite, readers should be familiar with some basic facts of calculus. The second part has been published under the title, Applied Functional Analysis: Main Principles and Their Applications.

Modern Nonlinear Equations

Author: Thomas L. Saaty

Publisher: Courier Corporation

ISBN: 0486143767

Category: Mathematics

Page: 496

View: 7148

Covers major types of classical equations: operator, functional, difference, integro-differential, and more. Suitable for graduate students as well as scientists, technologists, and mathematicians. "A welcome contribution." — Math Reviews. 1964 edition.

Functional Analysis and Applied Optimization in Banach Spaces

Applications to Non-Convex Variational Models

Author: Fabio Botelho

Publisher: Springer

ISBN: 3319060740

Category: Mathematics

Page: 560

View: 8628

​This book introduces the basic concepts of real and functional analysis. It presents the fundamentals of the calculus of variations, convex analysis, duality, and optimization that are necessary to develop applications to physics and engineering problems. The book includes introductory and advanced concepts in measure and integration, as well as an introduction to Sobolev spaces. The problems presented are nonlinear, with non-convex variational formulation. Notably, the primal global minima may not be attained in some situations, in which cases the solution of the dual problem corresponds to an appropriate weak cluster point of minimizing sequences for the primal one. Indeed, the dual approach more readily facilitates numerical computations for some of the selected models. While intended primarily for applied mathematicians, the text will also be of interest to engineers, physicists, and other researchers in related fields.

Teubner-Taschenbuch der Mathematik. 2 (2003)

Author: Günter Grosche,Eberhard Zeidler

Publisher: Springer-Verlag

ISBN: 9783519210085

Category: Mathematics

Page: 830

View: 1790

Das Teubner-Taschenbuch der Mathematik erfüllt aktuell, umfassend und kompakt alle Erwartungen, die an ein mathematisches Nachschlagewerk gestellt werden. Es vermittelt ein lebendiges und modernes Bild der heutigen Mathematik. Als Handbuch begleitet es die Studierenden vom ersten Semester an und der Praktiker nutzt es als unentbehrliches Nachschlagewerk. Der Teil II dieses erfolgreichen Werkes behandelt die vielfältigen Anwendungen der Mathematik in Informatik, Operations Research und mathematischer Physik. Das thematische Spektrum reicht von Tensoranalysis, Maßtheorie und Funktionalanalysis über Dynamische Systeme und Variationsrechnung bis zu Mannigfaltigkeiten, Riemannscher Geometrie, Liegruppen und Topologie.

Method of Guiding Functions in Problems of Nonlinear Analysis

Author: Valeri Obukhovskii,Pietro Zecca,Nguyen Van Loi,Sergei Kornev

Publisher: Springer

ISBN: 3642370705

Category: Mathematics

Page: 177

View: 8560

This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of nonlinear and multivalued analysis, describes the classical aspects of the method of guiding functions, and then presents recent findings only available in the research literature. It describes essential applications in control theory, the theory of bifurcations, and physics, making it a valuable resource not only for “pure” mathematicians, but also for students and researchers working in applied mathematics, the engineering sciences and physics.