**Author**: Dieter Blessenohl,Manfred Schocker

**Publisher:** World Scientific

**ISBN:** 9781860945113

**Category:** Mathematics

**Page:** 172

**View:** 9979

A new approach to the character theory of the symmetric group has been developed during the past fifteen years which is in many ways more efficient, more transparent, and more elementary. In this approach, to each permutation is assigned a class function of the corresponding symmetric group. Problems in character theory can thereby be transferred into a completely different setting and reduced to combinatorial problems on permutations in a natural and uniform way.This is the first account in book form entirely devoted to the new ?noncommutative method?. As a modern and comprehensive survey of the classical theory the book contains such fundamental results as the Murnaghan-Nakayama and Littlewood-Richardson rules as well as more recent applications in enumerative combinatorics and in the theory of the free Lie algebra. But it is also an introduction to the vibrant theory of certain combinatorial Hopf algebras such as the Malvenuto-Reutenauer algebra of permutations.The three detailed appendices on group characters, the Solomon descent algebra and the Robinson-Schensted correspondence makes the material self-contained and suitable for undergraduate level. Students and researchers alike will find that noncommutative character theory is a source of inspiration and an illuminating approach to this versatile field of algebraic combinatorics.

Das vorliegende Buch beschäftigt sich mit der Struktur der Solomon-Tits-Algebren der symmetrischen Gruppen motiviert durch Forschungsergebnisse von Manfred Schocker zur Modulstruktur dieser Algebren. Mit Struktur sind hier gleichsam drei Strukturen gemein

Während meiner Promotionszeit an der Christian-Albrechts-Universität zu Kiel hielt Salvatore Siciliano einen anregenden Vortrag im Oberseminar „Algebrentheorie“ zu Cartan-Teilalgebren in Lie-Algebren assoziiert zu assoziativen Algebren. Dieser Vortrag wa

These proceedings are from the Tenth International Conference on Representations of Algebras and Related Topics (ICRA X) held at The Fields Institute. In addition to the traditional ''instructional'' workshop preceding the conference, there were also workshops on ''Commutative Algebra, Algebraic Geometry and Representation Theory'', ''Finite Dimensional Algebras, Algebraic Groups and Lie Theory'', and ''Quantum Groups and Hall Algebras''. These workshops reflect the latest developments and the increasing interest in areas that are closely related to the representation theory of finite dimensional associative algebras. Although these workshops were organized separately, their topics are strongly interrelated. The workshop on Commutative Algebra, Algebraic Geometry and Representation Theory surveyed various recently established connections, such as those pertaining to the classification of vector bundles or Cohen-Macaulay modules over Noetherian rings, coherent sheaves on curves, or ideals in Weyl algebras. In addition, methods from algebraic geometry or commutative algebra relating to quiver representations and varieties of modules were presented. The workshop on Finite Dimensional Algebras, Algebraic Groups and Lie Theory surveyed developments in finite dimensional algebras and infinite dimensional Lie theory, especially as the two areas interact and may have future interactions. The workshop on Quantum Groups and Hall Algebras dealt with the different approaches of using the representation theory of quivers (and species) in order to construct quantum groups, working either over finite fields or over the complex numbers. In particular, these proceedings contain a quite detailed outline of the use of perverse sheaves in order to obtain canonical bases. The book is recommended for graduate students and researchers in algebra and geometry.

An Introduction to Quasisymmetric Schur Functions is aimed at researchers and graduate students in algebraic combinatorics. The goal of this monograph is twofold. The first goal is to provide a reference text for the basic theory of Hopf algebras, in particular the Hopf algebras of symmetric, quasisymmetric and noncommutative symmetric functions and connections between them. The second goal is to give a survey of results with respect to an exciting new basis of the Hopf algebra of quasisymmetric functions, whose combinatorics is analogous to that of the renowned Schur functions.

This two-part survey provides a short review of the classical part of representation theory, carefully exposing the structure of the theory without overwhelming readers with details, and deals with representations of Virasoro and Kac-Moody algebra. It presents a wealth of recent results on representations of infinite-dimensional groups.

Contributions by three authors treat aspects of noncommutative geometry that are related to cyclic homology. The authors give rather complete accounts of cyclic theory from different points of view. The connections between (bivariant) K-theory and cyclic theory via generalized Chern-characters are discussed in detail. Cyclic theory is the natural setting for a variety of general abstract index theorems. A survey of such index theorems is given and the concepts and ideas involved in these theorems are explained.

"The goal of this publication is to reinforce the interface between physical sciences, theoretical computer science, and discrete mathematics. The intersection of combinatorics and statistical physics has been an area of great activity over the past few years, fertilized by an exchange not only of techniques but of objectives. Some of the topics of particular interest are: percolation, random coloring, mixing, homomorphisms from and to fixed graph, phase transitions, threshold phenomena. This book is aimed to assemble theoretical physicists and specialists of theoretical informatics and discrete mathematics in order to learn more about recent developments in cryptography, algorithmics, symbolic calculus, non-standard numeration systems, algebraic combinatorics, automata etc., which could reveal themselves to be of crucial interest in natural sciences. This volume is organized along the following rough thematic division: Physics; Chaos and Fractals; Quasi-Crystals and Tilings; Numeration, Automata, and Languages; Algebraic Combinatorics; and Graphs and Networks."

This book consists of three parts, rather different in level and purpose. The first part was originally written for quantum chemists. It describes the correspondence, due to Frobenius, between linear representations and characters. The second part is a course given in 1966 to second-year students of l’Ecole Normale. It completes in a certain sense the first part. The third part is an introduction to Brauer Theory.

Together with Theory of Operator Algebras I and III, this book presents the theory of von Neumann algebras and non-commutative integration focusing on the group of automorphisms and the structure analysis. From the reviews: "These books can be warmly recommended to every graduate student who wants to become acquainted with this exciting branch of mathematics. Furthermore, they should be on the bookshelf of every researcher of the area." --ACTA SCIENTIARUM MATHEMATICARUM

A concise treatment of topics from group theory and representation theory for use in a one-term course. Focussing on the non-commutative side of the field, this advanced textbook emphasizes the general linear group as the most important group and example. Readers are expected to be familiar with groups, rings, and fields, and to have a solid knowledge of linear algebra. Close to 200 exercises of varying difficulty serve both to reinforce the main concept of the text and to introduce the reader to additional topics.

4. 1 Bergman-Toeplitz Operators Over Bounded Domains 242 4. 2 Hardy-Toeplitz Operators Over Strictly Domains Pseudoconvex 250 Groupoid C* -Algebras 4. 3 256 4. 4 Hardy-Toeplitz Operators Over Tubular Domains 267 4. 5 Bergman-Toeplitz Operators Over Tubular Domains 278 4. 6 Hardy-Toeplitz Operators Over Polycircular Domains 284 4. 7 Bergman-Toeplitz Operators Over Polycircular Domains 290 4. 8 Hopf C* -Algebras 299 4. 9 Actions and Coactions on C* -Algebras 310 4. 10 Hardy-Toeplitz Operators Over K-circular Domains 316 4. 11 Hardy-Toeplitz Operators Over Symmetric Domains 325 4. 12 Bergman-Toeplitz Operators Over Symmetric Domains 361 5. Index Theory for Multivariable Toeplitz Operators 5. 0 Introduction 371 5. 1 K-Theory for Topological Spaces 372 5. 2 Index Theory for Strictly Pseudoconvex Domains 384 5. 3 C*-Algebras K-Theory for 394 5. 4 Index Theory for Symmetric Domains 400 5. 5 Index Theory for Tubular Domains 432 5. 6 Index Theory for Polycircular Domains 455 References 462 Index of Symbols and Notations 471 In trod uction Toeplitz operators on the classical Hardy space (on the I-torus) and the closely related Wiener-Hopf operators (on the half-line) form a central part of operator theory, with many applications e. g. , to function theory on the unit disk and to the theory of integral equations.

These are the proceedings of a one-week international conference centered on asymptotic analysis and its applications. They contain major contributions dealing with - mathematical physics: PT symmetry, perturbative quantum field theory, WKB analysis, - local dynamics: parabolic systems, small denominator questions, - new aspects in mould calculus, with related combinatorial Hopf algebras and application to multizeta values, - a new family of resurgent functions related to knot theory.

*Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 3-9, 2000*

**Author**: Alain Connes,Joachim Cuntz,Erik G. Guentner,Nigel Higson,Jerome Kaminker,John E. Roberts

**Publisher:** Springer Science & Business Media

**ISBN:** 9783540203575

**Category:** Mathematics

**Page:** 356

**View:** 1290

"This book is an introduction to the language and techniques of noncommutative geometry at a level suitable for graduate students, and also provides sufficient detail to be useful to physicists and mathematicians wishing to enter this rapidly growing field. It may also serve as a reference text on several topics that are relevant to noncommutative geometry."--BOOK JACKET.