Noncommutative Character Theory of the Symmetric Group

Author: Dieter Blessenohl,Manfred Schocker

Publisher: World Scientific

ISBN: 9781860945113

Category: Mathematics

Page: 172

View: 1323

A new approach to the character theory of the symmetric group has been developed during the past fifteen years which is in many ways more efficient, more transparent, and more elementary. In this approach, to each permutation is assigned a class function of the corresponding symmetric group. Problems in character theory can thereby be transferred into a completely different setting and reduced to combinatorial problems on permutations in a natural and uniform way.This is the first account in book form entirely devoted to the new ?noncommutative method?. As a modern and comprehensive survey of the classical theory the book contains such fundamental results as the Murnaghan-Nakayama and Littlewood-Richardson rules as well as more recent applications in enumerative combinatorics and in the theory of the free Lie algebra. But it is also an introduction to the vibrant theory of certain combinatorial Hopf algebras such as the Malvenuto-Reutenauer algebra of permutations.The three detailed appendices on group characters, the Solomon descent algebra and the Robinson-Schensted correspondence makes the material self-contained and suitable for undergraduate level. Students and researchers alike will find that noncommutative character theory is a source of inspiration and an illuminating approach to this versatile field of algebraic combinatorics.

Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry

Author: Vlastimil Dlab,Claus Michael Ringel

Publisher: American Mathematical Soc.

ISBN: 9780821871454

Category: Mathematics

Page: 479

View: 3736

These proceedings are from the Tenth International Conference on Representations of Algebras and Related Topics (ICRA X) held at The Fields Institute. In addition to the traditional ''instructional'' workshop preceding the conference, there were also workshops on ''Commutative Algebra, Algebraic Geometry and Representation Theory'', ''Finite Dimensional Algebras, Algebraic Groups and Lie Theory'', and ''Quantum Groups and Hall Algebras''. These workshops reflect the latest developments and the increasing interest in areas that are closely related to the representation theory of finite dimensional associative algebras. Although these workshops were organized separately, their topics are strongly interrelated. The workshop on Commutative Algebra, Algebraic Geometry and Representation Theory surveyed various recently established connections, such as those pertaining to the classification of vector bundles or Cohen-Macaulay modules over Noetherian rings, coherent sheaves on curves, or ideals in Weyl algebras. In addition, methods from algebraic geometry or commutative algebra relating to quiver representations and varieties of modules were presented. The workshop on Finite Dimensional Algebras, Algebraic Groups and Lie Theory surveyed developments in finite dimensional algebras and infinite dimensional Lie theory, especially as the two areas interact and may have future interactions. The workshop on Quantum Groups and Hall Algebras dealt with the different approaches of using the representation theory of quivers (and species) in order to construct quantum groups, working either over finite fields or over the complex numbers. In particular, these proceedings contain a quite detailed outline of the use of perverse sheaves in order to obtain canonical bases. The book is recommended for graduate students and researchers in algebra and geometry.

An Introduction to Quasisymmetric Schur Functions

Hopf Algebras, Quasisymmetric Functions, and Young Composition Tableaux

Author: Kurt Luoto,Stefan Mykytiuk,Stephanie van Willigenburg

Publisher: Springer Science & Business Media

ISBN: 1461473004

Category: Computers

Page: 89

View: 2780

An Introduction to Quasisymmetric Schur Functions is aimed at researchers and graduate students in algebraic combinatorics. The goal of this monograph is twofold. The first goal is to provide a reference text for the basic theory of Hopf algebras, in particular the Hopf algebras of symmetric, quasisymmetric and noncommutative symmetric functions and connections between them. The second goal is to give a survey of results with respect to an exciting new basis of the Hopf algebra of quasisymmetric functions, whose combinatorics is analogous to that of the renowned Schur functions.

Coxeter Groups and Hopf Algebras

Author: Marcelo Aguiar,Swapneel Mahajan

Publisher: American Mathematical Soc.

ISBN: 0821853546

Category: Mathematics

Page: 181

View: 8300

An important idea in the work of G.-C. Rota is that certain combinatorial objects give rise to Hopf algebras that reflect the manner in which these objects compose and decompose. Recent work has seen the emergence of several interesting Hopf algebras of this kind, which connect diverse subjects such as combinatorics, algebra, geometry, and theoretical physics. This monograph presents a novel geometric approach using Coxeter complexes and the projection maps of Tits for constructing and studying many of these objects as well as new ones. The first three chapters introduce the necessary background ideas making this work accessible to advanced graduate students. The later chapters culminate in a unified and conceptual construction of several Hopf algebras based on combinatorial objects which emerge naturally from the geometric viewpoint. This work lays a foundation and provides new insights for further development of the subject.

Handbook of Algebra

Author: M. Hazewinkel

Publisher: Elsevier

ISBN: 9780080932811

Category: Mathematics

Page: 592

View: 9359

Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed. - Thorough and practical source of information - Provides in-depth coverage of new topics in algebra - Includes references to relevant articles, books and lecture notes

Representation Theory of Symmetric Groups

Author: Pierre-Loic Meliot

Publisher: CRC Press

ISBN: 1498719139

Category: Mathematics

Page: 682

View: 1583

Representation Theory of Symmetric Groups is the most up-to-date abstract algebra book on the subject of symmetric groups and representation theory. Utilizing new research and results, this book can be studied from a combinatorial, algorithmic or algebraic viewpoint. This book is an excellent way of introducing today’s students to representation theory of the symmetric groups, namely classical theory. From there, the book explains how the theory can be extended to other related combinatorial algebras like the Iwahori-Hecke algebra. In a clear and concise manner, the author presents the case that most calculations on symmetric group can be performed by utilizing appropriate algebras of functions. Thus, the book explains how some Hopf algebras (symmetric functions and generalizations) can be used to encode most of the combinatorial properties of the representations of symmetric groups. Overall, the book is an innovative introduction to representation theory of symmetric groups for graduate students and researchers seeking new ways of thought.

Representation Theory of Finite Groups and Associative Algebras

Author: Charles W. Curtis,Irving Reiner

Publisher: American Mathematical Soc.

ISBN: 0821840665

Category: Mathematics

Page: 689

View: 6766

First published in 1962, this classic book remains a remarkably complete introduction to various aspects of the representation theory of finite groups. One of its main advantages is that the authors went far beyond the standard elementary representation theory, including a masterly treatment of topics such as general non-commutative algebras, Frobenius algebras, representations over non-algebraically closed fields and fields of non-zero characteristic, and integral representations. These and many other subjects are treated extremely thoroughly, starting with basic definitions and results and proceeding to many important and crucial developments. Numerous examples and exercises help the reader of this unsurpassed book to master this important area of mathematics.

Representations of Lie Groups, Kyoto, Hiroshima, 1986

Author: K. Okamoto,T. Oshima

Publisher: Academic Press

ISBN: 1483257576

Category: Mathematics

Page: 672

View: 7949

Representations of Lie Groups, Kyoto, Hiroshima, 1986 contains the proceedings of a symposium on "Analysis on Homogeneous Spaces and Representations of Lie Groups" held on September 1-6, 1986 in Japan. The symposium provided a forum for discussing Lie groups and covered topics ranging from geometric constructions of representations to the irreducibility of discrete series representations for semisimple symmetric spaces. A classification theory of prehomogeneous vector spaces is also described. Comprised of 22 chapters, this volume first considers the characteristic varieties of certain modules over the enveloping algebra of a semisimple Lie algebra, such as highest weight modules and primitive quotients. The reader is then introduced to multiplicity one theorems for generalized Gelfand-Graev representations of semisimple Lie groups and Whittaker models for the discrete series. Subsequent chapters focus on Lie algebra cohomology and holomorphic continuation of generalized Jacquet integrals; the generalized Geroch conjecture; algebraic structures on virtual characters of a semisimple Lie group; and fundamental groups of semisimple symmetric spaces. The book concludes with an analysis of the boundedness of certain unitarizable Harish-Chandra modules. This monograph will appeal to students, specialists, and researchers in the field of pure mathematics.

Representation Theory and Noncommutative Harmonic Analysis I

Fundamental Concepts. Representations of Virasoro and Affine Algebras

Author: Alexandre Kirillov

Publisher: Springer Science & Business Media

ISBN: 3662030020

Category: Mathematics

Page: 236

View: 7878

This two-part survey provides a short review of the classical part of representation theory, carefully exposing the structure of the theory without overwhelming readers with details, and deals with representations of Virasoro and Kac-Moody algebra. It presents a wealth of recent results on representations of infinite-dimensional groups.


Author: N.A

Publisher: N.A


Category: Academic libraries

Page: N.A

View: 9374

Cyclic Homology in Non-Commutative Geometry

Author: Joachim Cuntz,Georges Skandalis,Boris Tsygan

Publisher: Springer Science & Business Media

ISBN: 9783540404699

Category: Mathematics

Page: 137

View: 455

Contributions by three authors treat aspects of noncommutative geometry that are related to cyclic homology. The authors give rather complete accounts of cyclic theory from different points of view. The connections between (bivariant) K-theory and cyclic theory via generalized Chern-characters are discussed in detail. Cyclic theory is the natural setting for a variety of general abstract index theorems. A survey of such index theorems is given and the concepts and ideas involved in these theorems are explained.

Linear Representations of Finite Groups

Author: Jean-Pierre Serre

Publisher: Springer Science & Business Media

ISBN: 1468494589

Category: Mathematics

Page: 172

View: 4171

This book consists of three parts, rather different in level and purpose. The first part was originally written for quantum chemists. It describes the correspondence, due to Frobenius, between linear representations and characters. The second part is a course given in 1966 to second-year students of l’Ecole Normale. It completes in a certain sense the first part. The third part is an introduction to Brauer Theory.

Quantum Theory, Groups and Representations

An Introduction

Author: Peter Woit

Publisher: Springer

ISBN: 3319646125

Category: Science

Page: 668

View: 2796

This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.

Physics and Theoretical Computer Science

From Numbers and Languages to (quantum) Cryptography Security

Author: Jean-Pierre Gazeau,Jaroslav Nešetřil,Branislav Rovan

Publisher: IOS Press

ISBN: 1586037064

Category: Science

Page: 333

View: 737

"The goal of this publication is to reinforce the interface between physical sciences, theoretical computer science, and discrete mathematics. The intersection of combinatorics and statistical physics has been an area of great activity over the past few years, fertilized by an exchange not only of techniques but of objectives. Some of the topics of particular interest are: percolation, random coloring, mixing, homomorphisms from and to fixed graph, phase transitions, threshold phenomena. This book is aimed to assemble theoretical physicists and specialists of theoretical informatics and discrete mathematics in order to learn more about recent developments in cryptography, algorithmics, symbolic calculus, non-standard numeration systems, algebraic combinatorics, automata etc., which could reveal themselves to be of crucial interest in natural sciences. This volume is organized along the following rough thematic division: Physics; Chaos and Fractals; Quasi-Crystals and Tilings; Numeration, Automata, and Languages; Algebraic Combinatorics; and Graphs and Networks."

Basic Noncommutative Geometry

Author: Masoud Khalkhali

Publisher: European Mathematical Society

ISBN: 9783037190616

Category: Mathematics

Page: 223

View: 7451

"Basic Noncommutative Geometry provides an introduction to noncommutative geometry and some of its applications. The book can be used either as a textbook for a graduate course on the subject or for self-study. It will be useful for graduate students and researchers in mathematics and theoretical physics and all those who are interested in gaining an understanding of the subject. One feature of this book is the wealth of examples and exercises that help the reader to navigate through the subject. While background material is provided in the text and in several appendices, some familiarity with basic notions of functional analysis, algebraic topology, differential geometry and homological algebra at a first year graduate level is helpful. Developed by Alain Connes since the late 1970s, noncommutative geometry has found many applications to long-standing conjectures in topology and geometry and has recently made headways in theoretical physics and number theory. The book starts with a detailed description of some of the most pertinent algebra-geometry correspondences by casting geometric notions in algebraic terms, then proceeds in the second chapter to the idea of a noncommutative space and how it is constructed. The last two chapters deal with homological tools: cyclic cohomology and Connes-Chern characters in K-theory and K-homology, culminating in one commutative diagram expressing the equality of topological and analytic index in a noncommutative setting. Applications to integrality of noncommutative topological invariants are given as well."--Publisher's description.

Pioneers of Representation Theory

Frobenius, Burnside, Schur, and Brauer

Author: Charles W. Curtis

Publisher: American Mathematical Soc.

ISBN: 9780821896723

Category: Mathematics

Page: 287

View: 9136

The year 1897 was marked by two important mathematical events: the publication of the first paper on representations of finite groups by Ferdinand Georg Frobenius (1849-1917) and the appearance of the first treatise in English on the theory of finite groups by William Burnside (1852-1927). Burnside soon developed his own approach to representations of finite groups. In the next few years, working independently, Frobenius and Burnside explored the new subject and its applications to finite group theory. They were soon joined in this enterprise by Issai Schur (1875-1941) and some years later, by Richard Brauer (1901-1977). These mathematicians' pioneering research is the subject of this book. It presents an account of the early history of representation theory through an analysis of the published work of the principals and others with whom the principals' work was interwoven. Also included are biographical sketches and enough mathematics to enable readers to follow the development of the subject. An introductory chapter contains some of the results involving characters of finite abelian groups by Lagrange, Gauss, and Dirichlet, which were part of the mathematical tradition from which Frobenius drew his inspiration. This book presents the early history of an active branch of mathematics. It includes enough detail to enable readers to learn the mathematics along with the history. The volume would be a suitable text for a course on representations of finite groups, particularly one emphasizing an historical point of view. Co-published with the London Mathematical Society. Members of the LMS may order directly from the AMS at the AMS member price. The LMS is registered with the Charity Commissioners.

Schur Algebras and Representation Theory

Author: Stuart Martin

Publisher: Cambridge University Press

ISBN: 9780521415910

Category: Mathematics

Page: 232

View: 8200

This is the first comprehensive text in this important and active area of research.